
Demystifying “Bad” Error Messages in 
Data Science Libraries 

Yida Tao1, Zhihui Chen1, Yepang Liu2, Jifeng Xuan3, Zhiwu Xu1, Shengchao Qin1,4

1 Shenzhen University, China
2 Southern University of Science and Technology, China

3 Wuhan University, China
4 Teesside University, UK

FSE. August 23–28, 2021.



Error messages have a bad reputation …… but why?

       

 
  
 
   

             
         

          

         
        

 
  

    

Error messages are (short) piece of 
natural-language text 
(e.g., “Table xxx not found.”)



Research Questions

How do developers fix bad error 

messages in practice?

RQ2

Why do certain error messages 

fail to be helpful debugging aids?

RQ1

Goal

Guide practitioners to 
design and use error 

messages more effectively



• These 6 Python libraries are widely used in data science development

• Debugging data science program is crucial in modern software development

• Bad error messages could have significant negative impact

• Error message quality has never been studied in the data science domain

Subjects

SciPy Scikit-learn Gensim



1
Methodology



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

DEBUGGING CONTEXT

=
?

RQ1: Why do certain error messages 

fail to be helpful debugging aids?



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

DEBUGGING CONTEXT

=
?

1 Extract all potential error messages by 
traversing the AST of subject libraries and 
look for ast.Raise nodes (4,744)

if not type_x in type_dict:
raise ValueError('Not supported set of arguments.')

Node type: ast.Raise

RQ1: Why do certain error messages 

fail to be helpful debugging aids?



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

DEBUGGING CONTEXT

=
?

1 Extract all potential error messages by 
traversing the AST of subject libraries and 
look for ast.Raise nodes (4,744)

if not type_x in type_dict:
raise ValueError('Not supported set of arguments.')

Node type: ast.Raise

2

Search for Stack Overflow 
questions that contain the 
extracted error messages 
with the library tags, and 
with accepted answers (201)

RQ1: Why do certain error messages 

fail to be helpful debugging aids?



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

Stack Overflow Question

=
?

Stack Overflow Answer

RQ1: Why do certain error messages 

fail to be helpful debugging aids?



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

Stack Overflow Question

=
?

Stack Overflow Answer

Faulty element Actual fault=?

RQ1: Why do certain error messages 

fail to be helpful debugging aids?



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

Stack Overflow Question

=
?

Stack Overflow Answer

Faulty element

Resolution

Actual fault

Actual fix

=?

=?

RQ1: Why do certain error messages 

fail to be helpful debugging aids?



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

Stack Overflow Question

=
?

Stack Overflow Answer

Faulty element

Resolution

Actual fault

Actual fix

=?

=?

Faulty element: 
Nouns (NN, NNP, NNS POS)

Heuristics

Faulty element: 2 labels

Manual Classification

RQ1: Why do certain error messages 

fail to be helpful debugging aids?

Same Different



MethodologyRQ1

ERROR MESSAGE ACTUAL FIX

Stack Overflow Question

=
?

Stack Overflow Answer

Faulty element

Resolution

Actual fault

Actual fix

=?

=?

Faulty element: 
Nouns (NN, NNP, NNS POS)

Heuristics

Faulty element: 2 labels

Manual Classification

RQ1: Why do certain error messages 

fail to be helpful debugging aids?

Same Different

Same Different

Indirect

Resolution: 
Contents entailed by 
“must”, “should”, 
“expected”, “have to”, etc.

Resolution: 3 labels



Error Message CharacteristicsRQ1

MISLEADING Error Messages (40/201)

- Resolution is different from the actual fix

19.9%

SHOULD-BE-CLEAR Error Messages (37/201)

- Pinpoint the same faulty element and resolution 
as the actual fix

18.4%

UNINFORMATIVE Error Messages (124/201)

- Provide indirect resolution

61.7%



MethodologyRQ2
RQ2: How do developers fix bad error 

messages in practice?

Use GitHub issues to study 

fixing strategies

 Search for closed issues that 

contain the 201 error messages or 

the string “error message”

 Filter irrelevant or duplicate issues

 Manually study the issue threads 

with merged commits (280) and 

without merged commits (55)



MethodologyRQ2

Use GitHub issues to study 

fixing strategies

 Search for closed issues that 

contain the 201 error messages or 

the string “error message”

 Filter irrelevant or duplicate issues

 Manually study the issue threads 

with merged commits (280) and 

without merged commits (55)

28%

16%

56%

Message content change 
(78/280)

Source code change (158/280)

Code + message change 
(44/280)

Most error-message issues are fixed by updating source code 
logics, instead of by updating the phrasing of message content. !

RQ2: How do developers fix bad error 

messages in practice?



2
Qualitative Results
Deficiency causes & fixing strategies



Misleading Error Messages

CAUSE

 Library is blind to user 

intentions or errors (12%)

 Library is buggy or 

outdated (10%)

 Open design issues (2%)



Misleading Error Messages

CAUSE

 Library is blind to user 

intentions or errors (12%)

 Library is buggy or 

outdated (10%)

 Open design issues (2%)

EXAMPLE

numpy.loadtxt('data.txt',delimiter='\t')

C# 6.78

D    5.32

W   5.32

data.txt

CodeCode

Wrong number of columns at line 2. Error 
msg
Error 
msg



Misleading Error Messages

CAUSE

 Library is blind to user 

intentions or errors (12%)

 Library is buggy or 

outdated (10%)

 Open design issues (2%)

EXAMPLE

numpy.loadtxt('data.txt',delimiter='\t')

C# 6.78

D    5.32

W   5.32

data.txt

numpy.loadtxt('data.txt',delimiter='\t', comments=None)

CodeCode

Wrong number of columns at line 2. 

Set comments=None to disable default '#' and imply no comments

Actual
fix

Actual
fix

Error 
msg
Error 
msg



Misleading Error Messages

CAUSE

 Library is blind to user 

intentions or errors (12%)

 Library is buggy or 

outdated (10%)

 Open design issues (2%)

EXAMPLE

numpy.loadtxt('data.txt',delimiter='\t')

C# 6.78

D    5.32

W   5.32

data.txt

numpy.loadtxt('data.txt',delimiter='\t', comments=None)

CodeCode

Wrong number of columns at line 2. 

Set comments=None to disable default '#' and imply no comments

Ambiguous user intention:

Is '#' a comment or a normal token?

Actual
fix

Actual
fix

Error 
msg
Error 
msg



Misleading Error Messages

CAUSE

 Library is blind to user 

intentions or errors (12%)

 Library is buggy or 

outdated (10%)

 Open design issues (2%)

FIXING STRATEGIES

Can't or Won't fix



Misleading Error Messages

CAUSE

 Library is blind to user 

intentions or errors (12%)

 Library is buggy or 

outdated (10%)

 Open design issues (2%)

FIXING STRATEGIES

Can't or Won't fix

Logic fixes and 

design changes (23.9%)

Source code change



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

EXAMPLE

Shapes (118, 1) and (118, 3) are incompatible

Set label_dimension=3 when invoking the 
DNNRegressor API

Actual
fix

Actual
fix

Error 
msg
Error 
msg



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

EXAMPLE

Shapes (118, 1) and (118, 3) are incompatible

Set label_dimension=3 when invoking the 
DNNRegressor API

Actual
fix

Actual
fix

Error 
msg
Error 
msg

Error messages pinpoint to the final manifestation of 
the fault instead of the faulty element itself. Although it 
points to the right direction, it might be considered as 
less straightforward



FIXING STRATEGIES

Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

1. Fail early, fail fast (31%)

def __init__(self, objs, axis=0, join='outer', join_axes=None, keys=None, levels=None,

names=None, ignore_index=False, verify_integrity=False):

+ if not isinstance(objs, (tuple, list, dict)):

+  raise AssertionError('first argument must be a list of pandas objects, you passed'

+   'an object of type "{0}"'.format(type(objs).__name__))



FIXING STRATEGIES

Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

1. Fail early, fail fast (31%)

def __init__(self, objs, axis=0, join='outer', join_axes=None, keys=None, levels=None,

names=None, ignore_index=False, verify_integrity=False):

+ if not isinstance(objs, (tuple, list, dict)):

+  raise AssertionError('first argument must be a list of pandas objects, you passed'

+   'an object of type "{0}"'.format(type(objs).__name__))

2. Ask for forgiveness than permission (7%)

+  try:

s = Series(A.data, MultiIndex.from_arrays((A.row, A.col)))

+ except AttributeError:

+ raise TypeError('Expected coo_matrix. Got {} instead.

+ .format(type(A).__name__))



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

EXAMPLE

pandas.to_numeric(df)

df.apply(lambda x: pandas.to_numeric(x), axis=0))

Arg must be a list, tuple, 1-d array, or Series.

(among other viable resolutions)

CodeCode

Actual
fix

Actual
fix

Error 
msg
Error 
msg



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

FIXING STRATEGIES

1. Add actionable instructions (message content fix)

“X                          -negative integers. Please set categories='auto' 

explicitly to be able to use arbitrary integer values as category identifiers.”



Uninformative Error Messages

CAUSE

 Faulty element is too low-level (15%)

 Faulty element is too general (2%)

 Requirements are cognitively distant 

from the fix implementation (56%)

 Requirements are implicit (2%)

FIXING STRATEGIES

I’                           

prescriptive with solution as library 

                    ’            .

“

”

1. Add actionable instructions (message content fix)

2. Can't or Won't fix

“X                          -negative integers. Please set categories='auto' 

explicitly to be able to use arbitrary integer values as category identifiers.”



Should-be-clear Error Messages

These error messages pinpoint the same faulty element and resolution as the actual fix …… but they still appear in 
Stack Overflow questions. Why?

User are unfamiliar with:

• Domain-specific concepts

• Library/API-specific concepts

• Programming languages



Should-be-clear Error Messages

These error messages pinpoint the same faulty element and resolution as the actual fix …… but they still appear in 
Stack Overflow questions. Why?

User are unfamiliar with:

• Domain-specific concepts

• Library/API-specific concepts

• Programming languages

Library developerLibrary user

“…... alignable …….” Err msg

“’alignable’             

                      .”

“’alignable’           

means matching both 

lengths and labels in 

           w    .”



3
Summary & Insights



Summary & Insights

The “misleadingness” and “uninformativeness” of error messages
are often inevitable and hard to resolve, since libraries are
inherently blind to user intentions or mistakes

Bad error message ← Fixable by libraries

Bad error message 
(users’ perspective)

Bad error message ≠ Bad phrasing of message content

Source code and program-logic changes are often required to fix
error-message-related complaints. Exclusive message content
updates are less frequent.

Bad error message 
(devs’ perspective)

≠

Library users and developers may have different interpretations
and perceptions of the same error message.



Summary & Insights

The “misleadingness” and “uninformativeness” of error messages
are often inevitable and hard to resolve, since libraries are
inherently blind to user intentions or mistakes

Bad error message ← Fixable by libraries

Bad error message 
(users’ perspective)

Bad error message ≠ Bad phrasing of message content

Source code and program-logic changes are often required to fix
error-message-related complaints. Exclusive message content
updates are less frequent.

Bad error message 
(devs’ perspective)

≠

Library users and developers may have different interpretations
and perceptions of the same error message.

Raise awareness of the inherent limitations of libraries

Avoid overreliance on error messages in debugging

Library users

Raise awareness of the conceptual mismatch in users

Improving error handling practices

Library developers

Differentiate bad error messages more carefully
based on specific deficiency causes

Focus on how error handling practice and logic
errors affect the perception of error messages

Researchers



Thank You.


