
Understanding Performance Concerns in the API 
Documentation of Data Science Libraries

Yida Tao
Shenzhen University
Guangdong, China

Jiefang Jiang
Shenzhen University
Guangdong, China

Zhiwu Xu
Shenzhen University
Guangdong, China

Yepang Liu
Southern University of 
Science and Technology
Guangdong, China

Shengchao Qin
Teesside University, UK
Shenzhen University, China

ASE. September 21–25, 2020, Virtual Event, Australia

1



Motivation
• Data science is one of the most exciting emerging fields

• Performance issues are major bottlenecks for developing efficient data 
science applications

• The performance of popular data science libraries (e.g., pandas, numpy) is 
also vital for improving application efficiency and developer productivity

Painfully slow execution time and rapid memory exhaustion
2



Motivation

• Persistent and active discussions on the performance problems of 
data science libraries are observed

• Developers often suffer from long, recurring interruptions caused 
by performance problems

1,113 issues

134 days max resolution time
853 questions

58% answer acceptance

3



Documentation to the Rescue?

RQ1. (Prevalence) How common are data science APIs documented in performance-
related context? 

RQ2. (Knowledge) What types of knowledge are provided by performance-related 
documentation?

RQ3. (Consistency) What are the difference between the official and crowd 
documentation in terms of performance-related content?

RQ4. (Evolution) How does performance-related documentation evolve over time?

4



Extracting performance-
related sentences from 
the documentation

Evolution patterns of 
performance-related 
documentation

Knowledge types of 
performance-related 
documentation

Consistency between the 
official and crowd 
documentation

Approach Overview

01
Performance 
Concerns Extraction

02 
Knowledge 
Classification

03
Consistency
Analysis

04
Evolution 
Analysis

5



Data Collection

Official Documentation

• API docstring

• User guide
• Markdown (.md)
• reStructuredText (.rst)
• Jupyter notebook (.ipynb)

Libraries

• NumPy
• Pandas
• SciPy
• Scikit-learn
• TensorFlow
• Gensim

Crowd Documentation

• Stack Overflow
• Threads of the target 

libraries

• GitHub issues
• Threads of the target 

libraries

6



I. Extracting Performance-related Documentation

① Sentence Segmentation

② Matching performance-related keywords

• Fast, slow, expensive, performance, speedup, efficient, etc.
• Inflections of the above keywords (e.g., efficiency)

③ Identifying the APIs discussed in each sentence

• Use declarations, hyperlinks, and regular expressions to identify code 
entities in natural-language sentences

• Use AST parsing and naming heuristics to resolve APIs

④ Manual validation

• Whether the sentence truly discuss performance concerns
• Whether the API resolution is correct and complete

fast

fastpd.cut

①

②

③

7



Prevalence

0%

5%

10%

15%

20%

25%

30%

35%

NumPy Pandas SciPy Sklearn TensorFlow Gensim

% 
o

f 
To

ta
l A

P
Is

All libraries have nontrivial proportion of 
APIs being documented in performance-
related context.

• NumPy has 30% of its APIs being 
documented in performance-related 
context

• Other libraries have 10%-15% of such APIs

8



Prevalence

0%

5%

10%

15%

20%

25%

30%

35%

NumPy Pandas SciPy Sklearn TensorFlow Gensim

% 
o

f 
To

ta
l A

P
Is

From both Only from crowd Only from official Performance concerns from 
official documentation and 
crowd documentation cover a 
different set of APIs

9



II. Knowledge Classification

• Maalej and Robillard proposed 12 knowledge types for general API 
documentation [1]

• We conducted inductive coding to adjust the taxonomy to 
performance-specific documentation

• 11 knowledges types: 6 from [1] and 5 are newly emerged

[1] Patterns of knowledge in API reference documentation. Walid Maalej and Martin P. Robillard. TSE. 2013
10



Knowledge Type
Functionality
“The Series.align method is the fastest way to 
simultaneously align two objects” 
(pandas.Series.align)

Usage Practice
“To construct a matrix efficiently, make sure the 
items are pre-sorted by index, per row” 
(scipy.sparse.lil_matrix)

Alternatives
“Mini-batch sparse PCA MiniBatchSparsePCA is a 
variant of SparsePCA that is faster but less accurate” 
(sklearn.decomposition.MiniBatchSparsePCA)

11



Knowledge Type

• Functionality is the most common 
knowledge type (33%) in API 
docstrings, yet is less discussed in 
crowd documentation (8%)

• Alternatives (27%) and Usage Practice 
(25%) types of knowledge are more 
prevalent in crowd documentation

Functionality
“The Series.align method is the fastest way to 
simultaneously align two objects” 
(pandas.Series.align)

Usage Practice
“To construct a matrix efficiently, make sure the 
items are pre-sorted by index, per row” 
(scipy.sparse.lil_matrix)

Alternatives
“Mini-batch sparse PCA MiniBatchSparsePCA is a 
variant of SparsePCA that is faster but less accurate” 
(sklearn.decomposition.MiniBatchSparsePCA)

12



Knowledge Type

• Stack Overflow rarely provides explanatory knowledge types such as 
Implementation (5%) and Purpose & Rationale (1%)

Implementation
“Internally this version uses a much faster 
implementation that never constructs the indices 
and uses simple slicing. ” (numpy.fill_diagonal)

Purpose & Rationale
“The vectorize function is provided primarily for 
convenience, not for performance.” 
(numpy.vectorize)

0%

2%

4%

6%

8%

10%

12%

14%

16%

Docstring User guide Stack Overflow GitHub

Purpose & Rationale Implementation

13



III. Consistency Analysis

• Associate performance concerns from 
the crowd doc with the official doc that 
discuss the same subject APIs

• Classify each performance concern from 
crowd doc as
• Consistent
• Inconsistent
• Not officially documented

fastpd.cut()

pd.cut

Crowd 
Documentation

slowpd.cut()
Official 

Documentation

14



Information Consistency

Consistent

Inconsistent

Not officially 

documented

86% performance concerns from the crowd 
doc have not been found in the official doc
• Crowd documentation offer a large volume of new 

information on the performance of data science libraries.

15



Information Consistency

Consistent

Inconsistent

Not officially 

documented

86% performance concerns from the crowd 
doc have not been found in the official doc
• Crowd documentation offer a large volume of new 

information on the performance of data science libraries.

GitHub
“pd.eval(’x // y’, engine=’python’) 
is 1000 times slower than the same 
operation in actual Python”

User guide
“pandas.eval is many orders of 
magnitude slower for smaller 
expressions/objects than plain ol’ Python”

11% performance concerns from the 
crowd doc are consistent with official 
documentation

16



Information Consistency

3% performance concerns from 
the crowd doc are inconsistent
with official doc

Consistent

Inconsistent

Not officially 

documented

Stack Overflow
“The great thing about CountVectorizer is that . . . , 
which makes it very memory efficient, and should be 
able to solve any memory problems you’re having.”

User guide
“Have a look at the Hashing Vectorizer as a 

memory efficient alternative to CountVectorizer.”

17



IV. Evolution Analysis

“pd.eval is slower 
than plain Python.”

Commit History

Addition

Modification

18



IV. Evolution Analysis

“pd.eval is slower 
than plain Python.”

Commit History

Addition

Modification

Added together 
with API definition

Added later than 
API definition

19



IV. Evolution Analysis

“pd.eval is slower 
than plain Python.”

Commit History

Addition

Modification

Added together 
with API definition

Added later than 
API definition

Reasons for modification (11 reasons)

20



Evolution of Performance-related Doc

Developers tend to document performance concerns long after the 
addition of the subject API

• 60.1% performance concerns are added later than the API definition

• Avg. 596 days between the addition of API definition and the addition of its 
performance concerns

Adding API definition Adding its performance documentation

Avg. 596 days

21



Evolution of Performance-related Doc

Performance concerns are not updated often, whereas their subject 
APIs have been updated much more frequently

• 73.1% performance concerns have been stayed the same since they were added

• 19.6% performance concerns have been updated just once

Subject APIs

Performance-related 
documentation

Avg. 13.5 updates

Avg. 0.48 updates

22



Evolution of Performance-related Doc

Developers typically apply trivial updates on performance-related 
documentation, without major semantic changes

23



Takeaways
• A nontrivial proportion of data science APIs was documented in performance-related context

• Crowd documentation is highly complementary to official documentation in terms of API 
coverage, knowledge types, and the specific information provided in performance-related context

• The maintenance on performance-related documentation is relatively plateauing and peripheral 
given the active evolution of the subject APIs

• The quality of performance-related documentation might be improved by leveraging the 
unofficial performance information from crowd platforms and monitoring the rarely-updated 
performance information from the official documentation

24


