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ABSTRACT
Error messages are critical starting points for debugging. Unfor-
tunately, they seem to be notoriously cryptic, confusing, and un-
informative. Yet, it still remains a mystery why error messages
receive such bad reputations, especially given that they are merely
very short pieces of natural language text. In this paper, we empir-
ically demystify the causes and fixes of “bad” error messages, by
qualitatively studying 201 Stack Overflow threads and 335 GitHub
issues. We specifically focus on error messages encountered in data
science development, which is an increasingly important but not
well studied domain.

We found that the causes of “bad” error messages are far more
complicated than poor phrasing or flawed articulation of error mes-
sage content. Many error messages are inherently and inevitably
misleading or uninformative, since libraries do not know user in-
tentions and cannot “see” external errors. Fixes to error-message-
related issues mostly involve source code changes, while exclusive
message content updates only take up a small portion. In addition,
whether an error message is informative or helpful is not always
clear-cut; even error messages that clearly pinpoint faults and reso-
lutions can still cause confusion for certain users. These findings
thus call for a more in-depth investigation on how error messages
should be evaluated and improved in the future.

CCS CONCEPTS
• Software and its engineering → Error handling and recov-
ery.
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1 INTRODUCTION
When a program fails, the error message is often the first debug-
ging clue. Research has found that developers allocate a significant
portion (up to 25%) of debugging efforts on reading error messages,
which is equally demanding as reading source code [4]. Unfor-
tunately, error messages seem to have a bad reputation, as they
are often perceived as “cryptic”, “unclear”, “confusing”, “uninfor-
mative”, “misleading”, “unhelpful”, “poorly written”, and “hard to
digest” [3][24][34][35][36][39]. Being the typical diagnostic start-
ing point, poor error messages could substantially prohibit efficient
and effective debugging [3][39].

While previous work mostly addressed the quality of error mes-
sages generated by compilers [3][4][34], system software [36][39],
and static analysis tools [2][20], limited knowledge is available
about this issue in the domain of data science. Yet, as data science
is experiencing a phenomenal growth in recent years, developing
and debugging data science programs have become an indispens-
able part of modern software engineering [22]. Furthermore, while
debugging is generally difficult, debugging data science programs
could be doubly challenging when complex data processing, multi-
step pipelines and black-box models are heavily involved [17][40].
In such circumstances, poor error messages could only make things
worse.

In this work, we present the first empirical study on the qual-
ity of error messages encountered when debugging data science
programs. Our subjects include six Python libraries (e.g., NumPy,
Pandas, and TensorFlow) that are widely used by data science prac-
titioners. We specifically focus on “bad” error messages, since an
in-depth understanding of why such error messages are unfavor-
able and how they are fixed could directly guide the future design of
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better error messages. Accordingly, we aim to address the following
two research questions:

• RQ1: Why do certain error messages fail to be helpful de-
bugging aids?

• RQ2: How do developers fix “bad” error messages in prac-
tice?

For RQ1, we analyzed 201 Stack Overflow (SO for short) threads
that contain error messages of the subject libraries in the question
descriptions. Intuitively, posting a question on SO is often driven
by an unsuccessful debugging attempt. Hence, the inclusion of an
error message in the SO question typically indicates that the error
message is not helpful enough for debugging, which is exactly the
subject we aim to study in RQ1. By comparing these error messages
with the actual fixes derived from the accepted SO answers, we
characterized the error messages in terms of whether they pinpoint
the faults and how they deliver the resolutions, which essentially
measure their capabilities of assisting the fault localization and
repair tasks. We then used this characterization to mechanically
distinguish “misleading”, “uninformative”, and “should be clear”
error messages, and investigate the respective underlying causes
to answer RQ1.

For RQ2, we analyzed 335 GitHub issues of the subject libraries
that are related to error-message quality. By inspecting the thread
discussions and associated commits (if any), we derived common
strategies library developers adopt to handle such issues. Finally,
the findings of RQ1 and RQ2 are aligned to form a comprehensive
taxonomy of the causes and fixes to “bad” error messages.

Our study uncovered new knowledge about “bad” error messages
in data science libraries, including:

• Around 20% error messages are “misleading” for providing
resolutions different from the actual fixes; 61.7% error mes-
sages are “uninformative” for being cognitively distant from
the actual fixes, even though they indeed point to the right
directions for debugging.

• Most “misleading” error messages are in fact logically jus-
tifiable from libraries’ point of view. Such “misleadingness”
can be hard to resolve since libraries are inherently blind to
user intentions and external errors.

• Most “uninformative” error messages explicitly describe re-
quirements or violations, which are, however, still cogni-
tively distant from the fix implementations. Yet, due to un-
clear user intentions or invisible external errors, libraries
may not always be able to offer verbatim resolutions in error
messages.

• Most error-message issues are eventually fixed by updating
source code logics, instead of by updating the phrasing of
error messages. The most common fixing strategy is fail fast,
which adds new checks earlier in the program to prevent
late failures with obscure or low-level error messages.

• Library developers and end users could have different inter-
pretations of error messages. An error message that clearly
pinpoints the fault and resolution could still be considered
as unhelpful by users, especially those who are unfamiliar
with the problem domain, the API specification, or the pro-
gramming language.

Extracting diagnostic information

Matching SO threads

Error message

Faulty element

Same?Deficient error message

Resolution

Actual fault Actual fix

Same?
No No

Figure 1: The workflow of identifying “bad” error messages.

In general, “bad” error messages are not necessarily equivalent to
bad phrasing or presentation of error messages. Our study revealed
deeper causes to error message deficiency, which is fundamen-
tally attributed to how much information libraries can access and
how responsible libraries should be in terms of being diagnostic and
prescriptive. We hope that our findings could raise awareness of
these underlying reasons that lead to “bad” error messages, and
therefore motivate practitioners to design and consume error mes-
sages more effectively. The code and data of this study are publicly
available [33].

2 METHODOLOGY
In this section, we introduce our methodology in detail.

2.1 Data Collection
The subjects of this study include six popular libraries from the
Python ecosystem for data science. Specifically, NumPy [8] and
Pandas [26] provide flexible functionalities to manipulate struc-
tured data; SciPy [9] and Scikit-learn [28] feature various numerical
routines and algorithms for statistics and machine learning; Tensor-
Flow is a general-purpose deep learning framework [1]; Gensim is
a library for unsupervised topic modeling and natural language pro-
cessing [30]. Together, these libraries can be used to solve different
types of important tasks in data science.

We first identified all the error messages that can be potentially
generated by subject libraries. To this purpose, we recursively in-
voked Python’s dir() function to explore all methods in the subject
modules. During the process, we collected the API signatures of
these methods (e.g., pandas.crosstab) and the respective source
code using Python’s introspection capability [14]. We then built
abstract syntax trees from the source code and traversed the AST
to collect all nodes with the type ast.Raise, which represents the
statement where an error is explicitly raised (thrown). The corre-
sponding error messages can in turn be retrieved from the Raise
nodes. Using this approach, we identified 4,744 error messages from
the subject libraries, as shown in Table 1.
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Table 1: Dataset statistics.

Library Version # Error # Error messages # Error messages # Error-message issues
messages appeared in SO analyzed in SO context with confirmed fixes

NumPy 1.18.5 197 37 (19%) 18 55
Pandas 1.0.3 503 183 (36%) 62 105
SciPy 1.4.1 1,454 280 (19%) 32 28
Scikit-learn 0.22.1 523 125 (24%) 44 52
TensorFlow 2.1.0 1,881 225 (12%) 42 37
Gensim 3.8.0 186 40 (22%) 3 3

Total 4,744 890 (19%) 201 280

2.2 Characterizing Deficient Error Messages
To address RQ1, error messages should be evaluated in practical
debugging contexts with known resolutions. We used the SO plat-
form for this purpose. As mentioned in Section 1, if a user posted
an SO question that is associated with an error message, we might
reasonably assume that s/he is having difficulty in debugging even
in the presence of the error message. In other words, the error
message is potentially insufficient to aid debugging, which is ex-
actly the subject we aim to study. In addition, since SO strongly
advocates the reproducibility of the proposed problems and resolu-
tions [10], we could study target error messages in self-contained,
reproducible, and practical debugging contexts. The reward system
of SO further allowed us to identify known resolutions from the
accepted answers with sufficient confidence.

Figure 1 shows the workflow of this process. Basically, two types
of diagnostic information, faulty element and resolution, are ex-
tracted from error message content and cross-checked against the
actual fixes in accepted SO answers. Error messages that do not
pinpoint the same faulty elements or resolutions were considered
as deficient, and were manually analyzed to identify the underlying
causes. Below we describe each step in detail.

2.2.1 Matching SO Threads. Using the official Stack Exchange
REST API [11], we collected 299,181 SO threads tagged with the
subject libraries. We then searched for SO questions that con-
tain the extracted error messages and also have the respective
library tags. A notable step here is the preprocessing of string
formatting, which is often used in error messages to capture dy-
namic information (e.g., input values observed at runtime). Ma-
jor approaches to Python string formatting include the C-style
formatting (e.g., "Shape mismatch: %s" % var), string.format
(e.g., "Shape mismatch: {}".format(var)), and f-strings (e.g.,
f"Shape mismatch: {var}") [13]. To construct proper search
queries for formatted error messages, we replaced the placeholders
in these strings with wildcards so that the fixed part (e.g., “Shape
mismatch:”) will be matched while the variable part (e.g., var),
which may vary across different debugging contexts, will be ig-
nored.

Using this approach, we identified 890 error messages that ap-
peared in SO questions, which account for nearly one fifth of the
total error messages extracted from the subject libraries (Table 1).
We then retained error messages whose SO questions have positive
upvotes and accepted answers for further analysis. Note that if an

error message appeared in multiple eligible SO questions, we se-
lected the question with more upvotes. SO threads were skipped if
we had difficulty understanding the debugging contexts. Finally, the
SO threads of 201 distinct error messages (Table 1) were analyzed
to address RQ1.

2.2.2 Evaluating Error Message Content. We evaluate the quality
of the 201 error messages from the following two aspects.

Whether the error message pinpoints the exact faulty element: We
use faulty elements to refer to code elements, such as parameters,
variables, types, and operations, that cause the error and should
be fixed. To assist the identification of such elements, which are
essentially names, we used the Stanford CoreNLP toolkit [23] to
extract words from errormessageswith theNN (noun), NNP (proper
noun) and NNS (noun, plural) Part-of-Speech tags. We then cross-
checked the accepted SO answer to determine whether the faulty
elements identified from the error message were the same as those
addressed in the actual fix, which is essentially a binary labeling
process.

Consider the example #1 in Table 2. Since the fault ignore_index
addressed in the accepted fix also appears as a noun in the error
message, we assigned a positive label for this message for pinpoint-
ing the exact same faulty element. On the other hand, the error
message in the example #5 received a negative label for pinpointing
a faulty element (i.e., the ‘sep’ keyword) that is different from the
one being actually fixed (i.e., the DataFrame df ).

How the error message delivers the resolution: We determined
the resolution provided in an error message using the following
heuristics. First, if the error message contains words such as “must”,
“should”, “need”, “have to”, “required”, and “expected”, we consider
the content entailed by these words as the suggested resolution
(e.g., #3 in Table 2). Otherwise, we looked for negative words such
as “unexpected”, “cannot”, “unable”, and “invalid”, and used the
opposite meaning of the content entailed by these words as the
suggested resolution. For example, the error message “index is not
a valid DatetimeIndex or PeriodIndex” insinuates that index should
be a valid DatetimeIndex or PeriodIndex (#2 in Table 2).

We then labeled whether the resolution identified from the error
message is the same as the one implemented in the actual fix. In
Table 2, #1 and #2 are positive examples of this task. For those
with negative labels, however, we observed a special group of error
messages, which are distant from the actual fix but still point to
the right direction (e.g., #3 and #4 in Table 2). Given that error
messages are used as debugging aids, the ones that point to the
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Table 2: Examples of error message characterization.

# Error message Actual Fix Faulty Delivered Perception
element resolution

1 Can only append a Series if ignore_index=True
or if the Series has a name.

Add ignore_index=True when calling
append(). (so-33094056) Same Same Clear

2 index is not a valid DatetimeIndex or PeriodIn-
dex.

Convert the index to the DatetimeIndex
type. (so-26089670) Same Same Clear

3 The score function should be a callable, 26.48
was passed.

Import chi2 right before assigning it to the
score function to avoid accidental over-
writting. (so-60253980)

Same Indirect Uninformative

4
Failed to convert object of type <class ‘dict’>
to Tensor . . . . Consider casting elements to a
supported type.

Convert the y labels to the pd.Series type.
(so-54668364) Different Indirect Uninformative

5 Did you mean to supply a ‘sep’ keyword?
Use df[[‘a’,‘b’]].values instead of
df[[‘a’,‘b’]]. (so-53054127) Different Different Misleading

6 Table sqlite:///C:tmp.db not found.
Pass an sqlalchemy engine object instead
of a string to pd.read_sql_table. (so-
33083415)

Different Different Misleading

right direction should be differentiated from the ones that point to
the wrong direction (e.g., #5 and #6 in Table 2). For this concern,
we assigned a special label, indirect, to such error messages.

The manual labeling was performed by the first two authors
independently. The Cohen’s kappa for their labelings in the two
tasks are 0.78 and 0.67, respectively, indicating a substantial inter-
rater agreement [25]. Disagreements1 were reconciled with the
third author joining the discussions.

2.2.3 Understanding Deficiency Causes. With these labelings, we
were now able to concretize the “badness” of error messages. First,
error messages that provide different resolutions could be perceived
as “misleading”. Then, error messages that provide indirect reso-
lutions or pinpoint different faulty elements could be considered
as “uninformative”. Finally, error messages that describe both the
same faulty elements and resolutions as the actual fixes should be
considered as “clear”. Table 2 shows examples of each category.

We then manually categorized the underlying causes to mislead-
ing and uninformative error messages. As no prior knowledge is
available for this type of categorization, we adopt the inductive
coding method in the process [5]. Initially, the first two authors
independently inspected the SO threads and related artifacts (e.g.,
source code, documentation, etc.) and created tentative codes that
best summarize the deficiency causes. Then, they got together to
compare the independent codes, merge similar concepts, and rec-
oncile disagreements. This process continued until the categories
of all deficiency causes were agreed by both annotators. We report
the findings in Section 3.

2.3 Characterizing Error Message Fixes
To address RQ2, we studied subject libraries’ GitHub issues to ana-
lyze developers’ strategies of handling error message issues. Specif-
ically, we searched for closed issues whose descriptions contain

1The number of disagreements for the two labeling tasks are 18 and 39, respectively.

either the “error message” string or the text of the 201 error mes-
sages studied in RQ1. Intuitively, the search criteria help to identify
issues that address users’ complaints on error messages, and we
are likely to identify a definite answer from developers for an issue
if it is already marked as closed.

Using the official GitHub REST API [16], we collected 1,026
GitHub issues that satisfied the search criteria. To make the inspec-
tions manually feasible and statistically meaningful, we randomly
sampled half of the issues. During the process, we discarded issues
that do not really address error message quality (e.g., gensim-gh-
2352) or address only trivial typos and spacing problems in error
messages.We also discarded issues whose duplicate or related issues
have already been inspected.

Finally, 335 issues were considered valid. Amongwhich, 280 have
associated commits that were merged to the main branch, indicat-
ing that the issues were confirmed and fixed by developers. For
these issues (Table 1), we inspected both their thread discussions
and merged commits to categorize library developers’ strategies
of fixing deficient error messages. We also studied the remaining
55 valid issues to understand why they were closed without any
change being made to the source code. An inductive coding ap-
proach similar to the one described in Section 2.2.3 was also adopted
in this process. The findings are reported in Section 4.

3 RQ1: WHY DO CERTAIN ERROR MESSAGES
FAIL TO BE HELPFUL DEBUGGING AIDS?

Based on the characterization described in Section 2.2, we identified
19.9% misleading error messages and 61.7% uninformative error
messages in our dataset (Table 3). We also identified 18.4% error
messages that are supposedly clear but still being asked on SO. In
this section, we report the underlying causes to the deficiency of
these error messages.

2Throughout the paper, we use so-questionID to uniquely identify an SO post
(https://stackoverflow.com/questions/questionID), and library-gh-issueID to uniquely
identify a GitHub issue (https://github.com/library/issues/issueID).
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Table 3: Error message evaluation results.

Faulty Resolution
Element Same Indirect Different Total
Same 37 96 16 149 (74.2%)

Different - 28 24 52 (25.8%)
Total 37 (18.4%) 124 (61.7%) 40 (19.9%) 201 (100%)

3.1 Misleading Error Messages
As explained in Section 2.2.3, an error message is likely to be con-
sidered as “misleading” if it suggested a resolution that is different
from the actual fix. Table 3 shows that there are 40 (19.9%) error
messages of such kind. Surprisingly, among these 40 error messages,
we identified only one error message from SciPy that is mislead-
ing indeed because it is poorly phrased. We made a commit to
rephrase this error message and submitted a corresponding pull
request, which was confirmed by SciPy developers and merged to
the library code. 3

Nonetheless, for the remaining 39 error messages, the underly-
ing causes to their “misleadingness” are more sophisticated than
how the messages themselves are phrased. Below we present our
observations.

3.1.1 Library is blind to user intentions or errors (20). Users can
use a library in many different ways. Yet, from the perspective
of library developers, how users intend to use the library is often
ambiguous. Consequently, libraries might produce error messages
that are logically justifiable but still misleading to users.

Consider numpy-so-28254992, which reports the error “Wrong
number of columns at line 2” when numpy.loadtxt is invoked to
load a text. This error occurred since the “#” symbol in the first
line of the input data is by default interpreted as a comment, yet
the user actually intended to use “#” as a normal symbol in the
word “C#” (Figure 2). Therefore, the accepted resolution is to pass
comments=None to numpy.loadtxt to disable the default behav-
ior, instead of fixing the number of columns in the input text as
suggested by the error message.

While the error message sounds misleading in this particular
case, it would also make perfect sense if users indeed intend to
use “#” as comments in the input. From the perspective of library
developers, it would be difficult to distinguish between a deliberate
and a careless API usage, especially when the default behavior is
explicitly described in the official documentation.4 In fact, this error
message was discussed in numpy-gh-1810 and numpy-gh-2591, in
which developers decided that for cases where an input line (e.g.,
line 2 in the example) has different columns than its previous line,
the error message will only spit out the current line number since
“it is not always clear where the problem is”. 5

In addition to user intentions, a library is also blind to external
errors that are essentially inaccessible from within the library’s
namespace. For such cases, it would be impractical to expect the
library to raise an error message that accurately describes the reso-
lutions. Figure 3 shows an example from pandas-so-40533647. Here,

3https://github.com/scipy/scipy/pull/13119
4https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
5https://github.com/numpy/numpy/issues/1810#issuecomment-9619267

Faulty Code

C# 6.78

D    5.32

W   5.32

Input data.txt

data = np.loadtxt('data.txt',delimiter='\t',dtype=str)

Error Message

Wrong number of columns at line 2.

Resolution

data = np.loadtxt('data.txt',delimiter='\t',dtype=str, comments=None)

actual fix

ambiguous 

intention

Figure 2: Example of ambiguous user intention.

1. df = df.tz_localize(pytz.timezone('US/Eastern'))
2. df.tz_convert(pytz.timezone('UTC'))

Faulty Code

Error Message

Cannot convert tz-naive timestamps, use tz_localize to localize.

Resolution

1. df.tz_localize(pytz.timezone('US/Eastern'))
2. df.tz_convert(pytz.timezone('UTC'))

actual fix

suggested fix

Figure 3: Example of external user errors.

tz_convert failed at line 2 and threw an error message that sug-
gests “use tz_localize to localize”, which may sound confusing since
the user already did so at line 1. The real fault, however, was that
the user did not assign the computation result at line 1 back to df,
hence the tz_localize operation did not really take effect at line
2. Yet, the library could not possibly “see” this external error. In
this sense, the error message was logically justifiable for explicitly
demanding the missing tz_localize operation.

In general, half of the inspected “misleading” error messages
seem to be logically reasonable from the library’s perspective. The
primary reason for their “misleadingness” is that libraries are in-
herently unaware of user intentions or user errors, which restrict
their abilities of offering accurate resolutions in error messages.

3.1.2 Library is buggy or outdated (16). When errors were caused
by library bugs or incompatibilities, accepted resolutions were typi-
cally updating library versions or applying workarounds. Therefore,
error messages that did not suggest the same might be considered
as misleading. For example, pandas-so-53054127 reports an error
“Did you mean to supply a ‘sep’ keyword?”. As explained in the ac-
cepted answer, the error was due to a bug in Pandas 0.21.1, which
was fixed in 0.23.4. Users could either update the library version or
apply a workaround to resolve the error (#5 in Table 2), instead of
supplying a ‘sep’ keyword as suggested by the error message.

Take pandas-so-33083415 as another example. An error “Table
sqlite:///C:tmp.db not found” occurred because Pandas 0.16 was in-
stalled to invoke read_sql_table with a string URL, which was
only supported since version 0.17. The accepted resolution was
either conforming the code to the 0.16 specification (#6 in Table 2)
or simply updating the library version, which had nothing to do
with the table existence insinuated by the error message.

3.1.3 Open design issues (3). Finally, we identified three cases
where the error messages demand consistent input shapes, which
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was different from the input sparsity issue tackled in the actual fixes.
For example, numpy-so-41349326 reports an error “all input arrays
must have the same shape” when invoking numpy.stack. However,
what really caused this error was that a sparse matrix that was not
recognized by the API was used as input.

In fact, the shape of sparse matrices is “a known and open issue”
in the Python data science community.6 Even library developers
themselves have described this issue as “a general cause of confu-
sion” and “an endless source of bugs”, and “trying to treat np.matrix,
np.ndarray, scipy.sparse, or masked matrices through a common in-
terface is a lost cause”,7 not to mention end users who may not even
be familiar with all these concepts.

Finding 1: Due to ambiguous user intentions, external user er-
rors, and open design issues, libraries can inevitably produce
error messages that are misleading to users.

3.2 Uninformative Error Messages
In addition to “misleading” error messages, error messages that
do not pinpoint the same faulty elements or provide only indirect
resolutions are also worth exploring as they might be considered
as “uninformative”.

3.2.1 Error messages do not pinpoint the same faulty elements. As
shown in Table 3, 52 (25.8%) error messages do not pinpoint the
same faulty elements. Among them, 24 also provide resolutions
different from the actual fixes, which were already discussed in
Section 3.1. For the remaining 28 error messages, we identified two
distinct deficiency patterns.

Faulty element is too general (4). In this type of error messages,
the faulty element being referred to is too general to be helpful. For
example, pandas-so-34532954 reports the errormessage “DataFrame
constructor not properly called”. The message was not wrong, given
that the first argument passed to the constructor indeed had an
incorrect type. However, the constructor of pandas.DataFrame
has five parameters, each has several valid options, and together
many combinations are possible. In such cases, knowing the error
message is still insufficient for locating the specific fault.

We observed that two of these error messages have already been
fixed by library developers later on, and the fixes indeed changed
error messages to be more specific on the faulty elements.8 For the
other two error messages (e.g., “Domain error in arguments”), we
submitted corresponding issues addressing their uninformativeness,
which have been confirmed by library developers.9

Faulty element is too low-level (24). Most of the error messages
that do not pinpoint the same faulty elements in fact pinpoint the fi-
nalmanifestations of the fault. For example, tensorflow-so-42888277
discussed a case where the user forgot to set the label_dimension
parameter when invoking the DNNRegressor API. This caused the
program to crash with an overwhelmingly long stack trace ended
with the message “Shapes (118, 1) and (118, 3) are incompatible”.
Here, the “incompatible shape” pinpointed by the error message
was essentially the final manifestation of the missing parameter.

6https://github.com/numpy/numpy/issues/7782#issuecomment-229310312
7https://github.com/scipy/scipy/issues/4239#issuecomment-65922166
8The fixing commits are 3ec9d6 for numpy and 2dd80c for pandas.
9Issues #13172 and #13173 for SciPy.

For end users, this type of error messages might be considered as
less straightforward since they pinpoint internal errorneous status
resulted from the fault instead of the fault itself. In this sense, their
“uninformativeness” is more of a byproduct of where the error is
handled, rather than how the error message itself is phrased. In
Section 4.1.1, we discuss how library developers handle such cases
in practice.

Finding 2: The faulty elements pinpointed by error messages
could be too low-level (internal) or too high-level (general) to be
informative. The former case is more commonly observed.

3.2.2 Error messages provide indirect resolutions. Table 3 shows
that 124 (61.7%) error messages suggest indirect resolutions. Among
which, 28 were indirect also for pinpointing different faulty ele-
ments, as discussed in Section 3.2.1. For the remaining 96 error
messages, we observed the following two deficiency causes.

Requirements are hardly derivable from the error messages (4).
This type of error messages tends to describe what is violated or
not allowed. However, what is required is hardly derivable from the
violations. For example, the error message “Not supported for type
Index” (pandas-so-45189650) states that Index is not supported;
yet, it is still unclear which types are supported. For users who
expect a direct answer, such error messages might be regarded
as uninformative. To improve these error messages, we identified
their respective requirements from the official documentation and
submitted four pull requests. The one that fixes the error message
in the prior example was already merged at this moment.10 Specifi-
cally, our merged fix changed the message to “This method is only
implemented for DatetimeIndex, PeriodIndex and TimedeltaIndex;
Got type Index”, which became more actionable by stating explicit
requirements.

Requirements in error messages are explicit, but still cognitively
distant from the fix implementations (92). Even if error messages
explicitly state the requirements, there may still exist nontrivial
cognitive gaps between understanding the requirements and im-
plementing the final fixes. For example, in pandas-so-36519546,
pandas.to_numeric(df) raised the error “arg must be a list, tu-
ple, 1-d array, or Series” since df was of an unexpected type. The
accepted fix was to use to_numeric as the lambda function when
invoking another API pandas.apply (i.e., df.apply(lambda x:
pd.to_numeric(x), axis=0)), which indeed complied with the
error message by passing a Series argument to to_numeric. Yet,
implementing this fix could still be cognitively demanding, espe-
cially for users who were unfamiliar with the pandas.apply API
or the lambda function.

Cognitive gaps are sometimes also the inevitable consequences of
unknown user intentions and errors, which are practically invisible
from the libraries. For example, the error message shown in Table 2
#3 explicitly required “the score function to be a callable”. However,
nontrivial debugging efforts were still needed for users to figure
out why this requirement was violated, which in this case was due
to an accidental overwritting of score in the client code. Since this
error was not even visible from the library’s namespace, the error
message could only highlight the concept of mistake instead of
offering direct resolutions.
10https://github.com/pandas-dev/pandas/pull/38176
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Finding 3: For error messages that offer indirect resolutions,
explicit requirements are either missing or cognitively distant
from the fix implementations. However, it is not always possible
for error messages to provide verbatim resolutions, also due to
unknown user intentions and errors.

3.3 Clear But Still Unhelpful Error Messages
Finally, error messages that pinpoint the same faulty elements and
resolutions as the actual fixes should be much clearer than the ones
discussed above. Interestingly, as shown in Table 3, such error mes-
sages were still observed in SO threads (18.4%), meaning that users
knowing the messages were still stuck in debugging regardless. We
identified the following reasons for this phenomenon.

3.3.1 Insufficient domain-specific knowledge. First, users with in-
sufficient domain knowledge may have a hard time understanding
error messages even when they are relatively clear. For example,
in sklearn-so-27623370, a user used a test data of 12 features on a
machine learning model that was trained on data with two features,
resulting in the error “Number of features of the model must match
the input. Model n_features is 2 and input n_features is 12”. In this
case, the error message directly pinpoints the fault (i.e., the number
of features) and the resolution (i.e., the features must match). How-
ever, the user was still stuck, possibly due to his/her insufficient
knowledge on the basic concepts in training and testing machine
learning models.

3.3.2 Unfamiliarity with API specification. A clear error message
may still be considered unhelpful if users were unfamiliar with
the API specification in the first place. For example, in sklearn-so-
54980098, a user received the error “x is neither increasing nor de-
creasing” when passing an array of labels to sklearn.metrics.auc,
whose official documentation explicitly states that the argument
must be an x coordinate that is either monotonically increasing or
decreasing. In this case, the error message should be clear in terms
of both the faulty element and the resolution if users are familiar
with the API specification.

3.3.3 Unfamiliarity with the programming language. Finally, users’
programming expertise could also affect their perceptions of error
messages. For example, the scipy.optimize.check_grad (func,
grad, x0, *args, **kwargs) API allows an arbitrary number of
arguments, indicated by *args and **kwargs. In scipy-so-40286648,
a user incorrectly used arg as if it was a normal keyword argument,
and therefore received the error message “Unknown keyword argu-
ments: [’args’]”. Even after the user checked the documentation of
this API, s/he was still convinced that args was a valid argumet
and that the error should not occur (the user asked: “Noteworthy
args is listed as an argumet in the help file. Shouldn’t this work?”). In
this case, if the user was familiar with Python’s syntax on this type
of variadic arguments (e.g., *args), the error message itself should
be self-explanatory.

Finding 4: Error messages that pinpoint the exact faulty ele-
ments and resolutions might still be considered as unhelpful,
especially when users are unfamiliar with the problem domain,
the API specification, or the programming language.
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Figure 4: Deficiency causes and respective fixing strategies.

4 RQ2: HOW DO DEVELOPERS FIX “BAD”
ERROR MESSAGES?

In this section, we report developers’ practice on handling deficient
error messages. Figure 4 shows an overview of the fixing strate-
gies and their associations with the deficiency causes described in
Section 3. 11

4.1 Fixing Strategies
To study fixing strategies, we analyzed 280 GitHub issues that ad-
dress error message quality and have confirmed fixes (Section 2.3).
Table 4 shows the types of artifacts changed in these fixes. Inter-
estingly, although error messages are being complained in these
issues, only 27.9% fixes exclusively update the message content.
The majority of fixes, however, involve updates to the source code.
In particular, 56.4% fixes only update the source code without even
changing the error message content. Below we discuss detailed
fixing strategies with respect to source code changes and message
content changes.

4.1.1 Source code changes. We identified four major strategies
developers adopt when they change source code to handle deficient
error messages.

Fail early, fail fast (30.7%): The majority of fixes adopt the “fail
fast” principle, which states that software should fail immediately
and visibly when a problem occurs [32]. Fixes adopting this strategy
typically add explicit checks earlier in the program without even
modifying the error message content.

Consider pandas-gh-3481, in which the error “Cannot call bool()
on DataFrame” was raised on pandas.concat(df1,df2). The user
complained that the message was “seriously cryptic”, given that

11The percentage of deficiency causes in Figure 4 is calculated by dividing the occur-
rence of each cause by 164, which is the number of error messages that do not provide
the same faulty elements and resolutions as the actual fixes (Table 3).
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Table 4: Types of changes made to fix deficient error mes-
sages. Only 27.9% fixes exclusively changed message con-
tent.

Error message changed Source code changed Total
✓ ✗ 78 (27.9%)
✗ ✓ 158 (56.4%)
✓ ✓ 44 (15.7%)

def __init__(self, objs, axis=0, join='outer', join_axes=None,

keys=None, levels=None, names=None,

ignore_index=False,  verify_integrity=False):

if not isinstance(objs, (tuple, list, dict)):

raise AssertionError('first argument must be a list of pandas '

'objects, you passed an object of type '

' "{0}" '.format(type(objs).__name__))

+

+

+ 

+  

Figure 5: Example of the “fail fast” fixing strategy.

the actual fix should be pandas.concat([df1,df2]). Library de-
velopers also confirmed this issue and commented “should fail fast”.
As shown in Figure 5, the fix to this issue was adding code to check
whether the objects being concatenated are in a list as soon as they
were passed to the API. With this fix, a more meaningful error
message, “first argument must be a list of pandas objects, you passed
an object of type ‘DataFrame’”, will be raised immediately for this
type of API misuse.

Recall the findings from Section 3.2.1, which state that error mes-
sages with low-level details were commonly observed and poten-
tially uninformative. The fail fast strategy could effectively address
this type of deficiency, as it prevents a program from proceeding
silently when an error occurs and crashing strangely later on with
obscure internal errors. In addition, by adding error handling code
earlier and closer to where the error occurs, critical context infor-
mation such as the faulty element becomes accessible from within
the library’s namespace and thus could be better embedded in the
error messages.

Ask for forgiveness than permission (7.1%): This strategy
basically wraps an existing code with a try block and raises a more
informative error message in the corresponding except block. Con-
sider pandas-gh-26554, in which the user complained that from_coo
gave a “not so useful” error message when given an input of non-
coo matrix type. As shown in Figure 6, the fix was to wrap the
corresponding statement in a try. . . except block with a more
user-friendly error message “Expected coo_matrix. Got csr_matrix
instead”.

In contrast to fail fast, which is essentially a preventive strategy,
this second strategy adopts the principle of “ask for forgiveness than
permission” [12]. To be more specific, this strategy still let whatever
internal errors to occur, but then catch them at the code of interest
with more context-aware error messages that mask low-level and
obscure details.

Dissecting overgeneralized errors (4.3%): While the previous
two strategies avoid low-level error messages, this third strategy im-
proves overgeneralized error messages by adding necessary helper
code. Take sklearn-gh-344 as an example. Initially, a general error

s = Series(A.data, MultiIndex.from_array((A.row, A.col)))

try:

s = Series(A.data, MultiIndex.from_arrays((A.row, A.col)))

except AttributeError:

raise TypeError('Expected coo_matrix. Got {} instead.'
.format(type(A).__name__))

-

+

+

+ 

+  
+  

Figure 6: Example of the “ask for forgiveness” strategy.

if not solver_type in self._solver_type_dict:

if self.penalty.upper() == 'L1' and self.loss.upper() == 'L1':

error_string = ("The combination of penalty='l1' "

"and loss='l1' is not supported.")

elif self.penalty.upper() == 'L2' and self.loss.upper() == 'L1':

error_string = ("loss='l2' and penalty='l1' is "

"only supported when dual='true'.")

else:

error_string = ("penalty='l1' is only supported "

"when dual='false'.")

raise ValueError('Not supported set of arguments: '

+ solver_type)

+ error_string)

+

+

+

+

+

+

+

+

+

-

+

Figure 7: Example of dissecting overgeneralized errors.

“Not supported set of arguments” was raised, which was considered
by users as “not clear at all”. Figure 7 shows the fix to this issue,
which added conditional checks to explore different errorneous com-
binations of parameters. As a result, the original overgeneralized
error messages was now dissected to three different error messages
with respect to three subconditions of errors (e.g., penalty=‘l1’ is
only supported when dual=‘false’).

Logic fixes and design changes (23.9%): While the aforemen-
tioned strategies focus on general error handling practice, a non-
trivial proportion of fixes also address project-specific logic flaws
or design issues. For example, an unhelpful error message “data not
found” was complained in scipy-gh-7718. The respective fix was
to defer a dictionary initialization to after an input type check, so
that an existing error message “Save is not implemented for sparse
matrix of format dok”, which is more helpful, could be reached and
thrown first. As another example, tensorflow-gh-6035 discussed
a “very obscure” error message “No OpKernel was registered to
support Op ‘MaxPoolWithArgmax’ with these attrs. Registered de-
vices: [CPU]”, when tf.nn.max_pool_with_argmax was executed
on CPU but only implemented for GPU. To fix this issue, develop-
ers made a major design change by adding a CPU support to the
max_pool_with_argmax op.

Finding 5: Source code changes in error-message-related fixes
typically implement more robust error handlings. Project-specific
logic fixes or design improvements could also prevent deficient
error messages from being raised.

4.1.2 Error message content changes. We identified nine strate-
gies developers adopt when they change error message content
to address related complaints. Table 5 describes these strategies
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Table 5: Strategies for fixing error message content.

Focus Strategy Example of error message changes (added, deleted)

Completeness

Add runtime contexts
(12.9%) “k=%d must be between 1 and rank(A)-1=%d” % (k, n-1) (scipy-ebb8b1)

Add actionable instruc-
tions (6.4%)

“X needs to contain only non-negative integers. Please set categories=’auto’ explicitly to
be able to use arbitrary integer values as category identifiers.” (sklearn-94c70f)

Add missing require-
ments (1.8%) “method must be either ’pearson’, ’spearman’, or ’kendall’, or a callable.” (pandas-64f596)

Clearness Clarification (7.5%) “min_samples_split must be at least 2 an integer greater than 1 or a float in (0, 1.0].” (sklearn-
84cc67)

Rephrase (4.6%) “If there is no initial_state is provided, you must give a dtype must be.” (tensorflow-06be84)

Correctness Fix incorrect info (6.1%) “The length of the input vector x must be at least greater than padlen.” (scipy-be94e5)

Fix outdated info (2.1%) “Use with default_session(sess) sess.as_default() or pass an explicit session to
run(session=sess).” (tensorflow-3e7aae)

Succinctness
Remove internal details
(2.1%) “{} are dtype not supported in cython ops.” (pandas-6b23fb8d)

Reduce message length
(1.1%)

“Valid options are [’accuracy’, ’adjusted_mutual_info_score’. . . (a very long list is omitted)]
Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.” (sklearn-825cf0)

with examples. In general, these strategies focus on improving the
following aspects of deficient error messages.

Completeness (21.1%): The majority of error message content
changes add new information to improve completeness. As shown
in Table 5, the most common type of information being added is the
runtime context information. Specifically, relevant variable values
or computation results observed when an error occurs are often
added to the corresponding error message, so that users could better
understand the errorneous program state and pivot debugging.

Actionable instruction is another type of information that is often
added to complete error messages. Such information might effec-
tively reduce the cognitive workload for implementing fixes (see
Section 3.2.2). We also observed a few cases where crucial require-
ments that were previously missing were added to complete the
error messages.

Clearness (12.1%): Error messages with complete information
may still be considered deficient if the presentation is unclear. Devel-
opers fix such error messages by clarifying concepts or rephrasing
sentences as shown in Table 5.

Correctness (8.2%): In addition, developers update error mes-
sage content to ensure that they are correct and up-to-date.

Succinctness (3.2%): In a few cases, developers remove unnec-
essary or verbose information from error messages to keep them
concise and readable.

Finding 6: Adding runtime context information is the most com-
mon strategy for improving error message content.

4.2 Won’t Fix
As described in Section 2.3, we identified 55 error-message-related
issues that were closed without any merged commits. Below we
summarize salient reasons why library developers hesitate to con-
firm or address these issues.

Conceptualmismatch among library developers andusers:
Since library developers and end users are not equally familiar with

the design or implementation of the library, they might have dif-
ferent interpretations of the same error messages. Consider the
error message “Unalignable boolean Series key provided” discussed
in pandas-gh-14491. A user considered this error message to be
“very confusing” since the term “alignable” intuitively refers to
matching lengths. On the contrary, a library developer considered
this message to be “rather clear”, since “alignable” naturally denotes
the matching of both lengths and labels “in the pandas-world”.

Numpy-gh-13666 is another example, in which a library devel-
oper considered the error message “loop of ufunc does not support
argument 0 of type int which has no callable sqrt method” to be
reasonably clear for “trying to explain what is going on”. However,
a user commented that “the error message may be helpful for numpy
developers but is still cryptic for numpy users who have no idea what
ufunc is or which loop it’s referring to.”

Issues are out of scope: Developers also turn down requests
to fix error messages when problems are not really related to the
libraries. For example, the error message “merge() takes at least 2
arguments (3 given)” was considered unhelpful in pandas-gh-18528.
Yet, library developers pointed out that this error was actually a de
facto Python compiler behavior for checking incorrect argument
passing, which occurred “before pandas even sees the call”.

In numpy-gh-7782, a user proposed to improve a misleading
error message by adding explanations on matrix sparsity. However,
developers turned down this proposal since the concept of “sparse
matrix” is only used in SciPy and is not introduced in NumPy.

User intentions are unknown: While users may prefer pre-
scriptive error messages that offer direct resolutions, developers
sometimes prefer descriptive error messages since libraries are blind
to user intentions. For example, in pandas-gh-25313, a user pro-
posed to replace an error message “KeyError: 1.75” with “Value was
not found in index. To match the closest value, use the parameter
method=‘nearest’”. A library developer commented that “I’m not
really fond of being prescriptive with solution as pandas is blind to
the user’s intentions”. This observation is also consistent with our
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findings in Section 3.2.2, which point out that error messages some-
times can only describe the mistakes instead of providing verbatim
resolutions due to unknown user intentions.

Finding 7: Error messages that are considered deficient by end
users might be perceived differently by library developers.

5 IMPLICATIONS
In this section, we summarize the implications of our findings from
the perspective of different stakeholders.

For library users, their intended usages sometimes are inher-
ently unknown to the libraries. Hence, error messages generated
by libraries cannot always offer direct explanations or resolutions
as expected. With this awareness, library users should avoid over-
reliance on error messages in debugging. Instead, they should be
more attune to other reasoning processes, such as exploring de-
bugging contexts, re-examining problem definitions, inspecting
library documentation, or even revisiting programming language
specifications, during debugging.

For library developers, more robust error handlings should be
practiced to prevent internal error messages from being raised and
users from being overwhelmed. When composing error messages,
developers should focus more on the message completeness, es-
pecially on whether crucial runtime contexts are being included.
In addition, instead of stating what is not allowed, error messages
should articulate what is allowed whenever possible. Furthermore,
error messages that are clear to developers might not be perceived
the same way by end users. Developers should be more aware of
this conceptual mismatch in order to design user-friendly error
messages.

For researchers, our study brings a few new perspectives on
error message quality and fixing strategies. First, we observed that
for a great number of error messages, their “deficiency” was in-
herently hard to resolve due to unknown user intentions or indis-
cretions. This finding urges related research to differentiate “bad”
error messages more carefully based on their specific deficiency
causes. Second, while most related research emphasized the prob-
lematic content of error messages (Section 7.1), we observed that
content improvements in fact account for only a small proportion of
error-message-related fixes. On the other hand, most error-message
issues were fixed by employing better exception handlings. How-
ever, although exception handling has been actively studied, very
few work pointed out its impact on error message quality (Sec-
tion 7.2). Our work identifies an important intersection of these
two lines of work, hence better motivates future research on related
topics.

6 THREATS TO VALIDITY
Our study analyzed a subset of error messages from six data science
libraries. The results may not generalize to error messages from
other software or application domains. We mitigate this threat
by maximizing the representativeness of the subject libraries. As
described in Section 2.1, the subjects are widely used in various
data science contexts.

As our subjects are all Python libraries, certain observations
might be specific to the inherent characteristics of dynamic pro-
gramming languages (e.g., error messages related to type errors).
Nevertheless, most of our qualitative findings are language-agnostic.
For example, deficient error messages that are caused by ambiguous
user intentions or cognitive gaps could also exist for statically-typed
languages.

We used Stack Overflow and GitHub as the primary data sources,
which could have noises. To mitigate this threat, we used only trust-
worthy information, such as the upvoted SO questions, accepted
SO answers, and merged commits, for the analyses.

We derived the deficiency causes and fixing strategies of error
messages mainly from manual inspections, which could be subjec-
tive. To mitigate this threat, we adopt the inductive coding process
with multiple human annotators, so that the qualitative results were
derived iteratively and collaboratively (Section 2). We also released
the results [33] so that researchers could help further reduce the
threat.

We characterized error messages in terms of whether they pin-
point the fault (i.e., fault localization) and how they deliver the
resolutions (i.e., repairs). Admittedly, there could be other ways to
evaluate error message quality. We chose these two metrics since
fault localization and program repair are both important subtasks
in debugging [15].

7 RELATEDWORK
7.1 Error message quality
Barik et al. found through an eye tracking study that develop-
ers allocate substantial debugging efforts on understanding error
messages, which are equally challenging as understanding source
code [4]. Unfortunately, deficient error messages have been ob-
served in different programming and application domains. For ex-
ample, Zhang and Ernst proposed a technique to detect inadequate
diagnostic messages for software configuration errors [39]. Xu et
al. identified the lack of feedback information in access-denied log
messsages, which imposed unnecessary obstacles for system admin-
istrators [36]. Marceau et al. studied novices’ interactions with the
error messages generated by an IDE for the Racket programming
language [24]. Barik et al. applied Toulmin’s model of argument to
study the design principles of Java compiler error messages [3].
Thiselton and Treude proposed a tool that automatically queries
Stack Overflow and summarizes answers to enhance Python com-
piler error messages [34].

Nonetheless, few studies explicitly distinguished the types of
deficient error messages and analyzed the underlying reasons. To
bridge this gap, our work quantified the diagnostic informativeness
of error messages in practical debugging context, and found that
error messages are often inevitably misleading or uninformative.
We also observed that the majority of error-message-related is-
sues were fixed by updating source code logics, which seems to be
overlooked by prior research that focused exclusively on improving
error message content. Finally, our study complements the previous
work by investigating the quality of error messages in the emerging
domain of data science.
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7.2 Exception handling
Exception handling have been actively studied by researchers. For
example, Sena et al. empirically studied the exception flow and
handler actions of 656 Java libraries to understand the exception
handling strategies [31]. Kechagia et al. investigated the exception
handling mechanisms of Android APIs [21]. Other work focused
on bugs related to exception handling. For example, Ebert et al. pro-
posed a classification of exception handling bugs, based on a survey
and an analysis of 220 Java exception handling bugs [7]. Coelho et
al. mined exception stack traces from Android issues to investigate
bug hazards related to exception handling code [6]. A few studies
proposed techniques to automatically generate exception handling
code. A recent work from Nguyen et al. proposed to learn fuzzy
logic rules from high-quality programs to recommend exception
handling code [27]. Zhang et al. proposed a neural approach that
predicts the locations of try blocks and automatically completes
catch blocks [37].

Nonetheless, most of these studies highlight program crashes or
resource leakage as the consequences of error handling bugs. Our
work pointed out that unthoughtful error handlings could also lead
to confusing, obscure, and unhelpful error messages that seriously
impede debugging.

7.3 Debugging data science programs
Debugging data science programs has received much research at-
tention in recent years. Zhang et al. empirically studied the root
causes, symptoms, and detection strategies of TensorFlow program
bugs [40]. Islam et al. investigated bug characteristics [18] and fix
patterns [19] of popular deep learning libraries including Caffe,
Keras, TensorFlow, Theano, and Torch. Zhang et al. analyzed real
failures from a deep learning platform in Microsoft and conducted
developer interviews to understand debugging practice on deep
learning jobs [38]. In addition to empirical studies, researchers
have also proposed techniques to automatically debug and test data
science programs. For example, Pham et al. proposed CRADLE,
which detects bugs in deep learning libraries by leveraging cross-
implementation inconsistency checking and anomaly propagation
tracking [29]. Zhang et al. proposed a static analysis approach, DE-
BAR, to detect numerical bugs in neural network architectures [41].
Our study complements the previous work by examining the diag-
nostic capabilities of error messages in different debugging contexts
of data science programs.

8 CONCLUSION
In this work, we empirically demystified the causes and fixes of
“bad” error messages in data science libraries. We found that the
“misleadingness” and “uninformativeness” of error messages are
often inevitable and hard to fix, since libraries are inherently un-
aware of user intentions and errors. We also found that “bad error
messages” are not equivalent to “bad phrasing of message con-
tent”, given that source-code and program-logic changes are often
required to fix error-message-related complaints. We hope that
these findings, which significantly deepen the understanding of the
origins, perceptions, and coping strategies of bad error messages,
could effectively steer future research in this field.
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