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ABSTRACT
Recent research has made significant progress in automatic
patch generation, an approach to repair programs with less
or no manual intervention. However, direct deployment of
auto-generated patches remains difficult, for reasons such as
patch quality variations and developers’ intrinsic resistance.

In this study, we take one step back and investigate a
more feasible application scenario of automatic patch gen-
eration, that is, using generated patches as debugging aids.
We recruited 95 participants for a controlled experiment, in
which they performed debugging tasks with the aid of ei-
ther buggy locations (i.e., the control group), or generated
patches of varied qualities. We observe that: a) high-quality
patches significantly improve debugging correctness; b) such
improvements are more obvious for difficult bugs; c) when
using low-quality patches, participants’ debugging correct-
ness drops to an even lower point than that of the control
group; d) debugging time is significantly affected not by de-
bugging aids, but by participant type and the specific bug
to fix. These results highlight that the benefits of using gen-
erated patches as debugging aids are contingent upon the
quality of the patches. Our qualitative analysis of partici-
pants’ feedback further sheds light on how generated patches
can be improved and better utilized as debugging aids.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Experimentation, Human Factors
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1. INTRODUCTION
Debugging is of paramount importance in the process of

software development and maintenance, given tens or even
hundreds of bugs reported daily from individual projects [2].
However, debugging is dauntingly challenging, as bugs can
take days or even months to resolve [2][3].

To alleviate developers’ burden of fixing bugs, automatic
patch generation is proposed to repair programs with less
or no manual intervention. Recent research in this area
has made significant progress [6][17][21][22][26][29][33]. Le
Goues et al. proposed a technique based on evolutionary
computation and used it to successfully repair 55 out of
105 real-world bugs [21]. Other advanced techniques, such
as runtime modifications [6][29], program synthesis using
code contracts and formal specifications [26][33], and pat-
tern adaptation [17] have also produced promising results in
terms of the repair success-rate.

Despite these fruitful research outcomes, direct deploy-
ment of auto-generated patches in production code seems
unrealistic at this point. Kim et al. suggested that gener-
ated patches are sometimes non-sensical and thus less likely
to be accepted by developers [17]. Research has also identi-
fied other reasons why developers are not comfortable with
blindly trusting auto-generated code. For example, gener-
ated code might be less readable and maintainable [7][13].

Rather than direct deployment, a more feasible applica-
tion of auto-generated patches would be to aid debugging,
since they not only pinpoint buggy locations, but also sug-
gest candidate fixes. Yet, developers can still judge whether
candidate fixes are correct and whether to adapt or discard
generated patches.

A natural question thus arises from the above scenario:
are auto-generated patches useful for debugging? In addi-
tion, generated patches vary in quality, which affects both
the functional correctness and future maintainability of the
program being patched [13]. Research has also found that
the quality of automated diagnostic aids affects users’ re-
liance and usages of them [23]. As such, does a patch’s qual-
ity affect its usefulness as a debugging aid?

In this paper, we conduct a large-scale human study to
address these two questions. We recruited 95 participants,
including 44 graduate students, 28 software engineers, and
23 Amazon Mechanical Turk (MTurk) [1] users to individ-
ually fix five real bugs. Each bug was aided by one of the
three hints: its low-quality or high-quality generated patch,
or its buggy location (method name) as the control condi-
tion. In total, we collected 337 patches submitted by the
participants.
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Figure 1: Overview of the experimental process. We create debugging tasks using five real bugs. Each bug
is aided by one of the three hints: its generated patch of low or high quality, or its buggy location. Our
participants include computer science graduate students, software engineers, and Amazon Mechanical Turk
(MTurk) users. Graduate students debug using the Eclipse IDE in onsite sessions while software engineers
and MTurk participants debug using our web-based debugging system. We evaluate participants’ patch
correctness, debugging time, and exit-survey feedback.

We observe a significant increase in the debugging correct-
ness when participants were aided by the high-quality gen-
erated patches, and such an improvement was more obvious
for difficult bugs. Nevertheless, participants were adversely
influenced by the low-quality generated patches, as their de-
bugging correctness dropped surprisingly to an even lower
point than the control group. This finding urges a strict
quality control for generated patches if we were to use them
as debugging aids. Otherwise, incorrect or unmaintainable
patches can indeed cloud developers’ judgement and deteri-
orate their debugging correctness.

Interestingly, the types of debugging aid have only mar-
ginal influence on participants’ debugging time, while the
types of bugs and participant populations instead have great-
er influence. For example, we observe a significant slow-
down in debugging time for the most difficult bug, and a
significant speed-up for software engineers and MTurk par-
ticipants compared to graduate students.

We also qualitatively analyze participants’ attitudes to-
ward using auto-generated patches. Participants gave gener-
ated patches credit for quick problem identification and sim-
plification. However, they remained doubtful about whether
generated patches can fix complicated bugs and address root
causes. Participants also claimed that they could have been
more confident and smooth in using generated patches if
they had deeper understanding of the buggy code, its con-
text, and its test cases.

Overall, this paper makes the following contributions.

• A large-scale human study for assessing the usefulness
of auto-generated patches as debugging aids.

• An in-depth quantitative evaluation on how debugging
is influenced by the quality of generated patches and
other factors such as the types of bugs and partici-
pants.

• A qualitative analysis of patch usages, which sheds
light on potential directions of automatic patch gen-
eration research.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our experimental process. Section 3 and
Section 4 report and discuss the study results. Section 5
presents threats to validity, followed by a survey of related
work in Section 6. Section 7 concludes the paper.

2. EXPERIMENTAL PROCESS
This section presents detailed experimental process fol-

lowing the overview of Figure 1.

2.1 Bug Selection and Debugging Aids
To evaluate the usefulness of auto-generated patches in

debugging, we select bugs that satisfy the following criteria:

• To simulate real debugging scenarios, real-world bugs
are favored over seeded ones [14] and the diversity of
bug types is preferred.

• Patches of varied qualities can be automatically gen-
erated for the chosen bugs.

• Patches written and accepted by the original develop-
ers should be available as the ground truth to evaluate
participants’ patches.

• A proper number of bugs should be selected to control
the length of the human study [16].

Accordingly, we selected five bugs reported by Kim et
al. [17] and summarize them in Table 1. Four of the bugs
are from Mozilla Rhino1 and one is from Apache Commons
Math2. These bugs manifest different symptoms and cover
various defect types, and all of them have been fixed by
developer-written and verified patches.

Kim et al. reported that all five bugs can be fixed by two
state-of-the-art program repair techniques, GenProg [21] and
PAR [17], such that their generated patches can pass all the
corresponding test cases [17]. Kim et al. launched a survey,
in which 85 developers and CS students were asked to rank
the acceptability of the generated patches for each bug [17].
Table 2 reports these ten generated patches (two patches for
each bug) along with their average acceptability rankings re-
ported by Kim et al. [17].

While the generated patches are equally qualified in terms
of passing test cases, humans rank patch acceptability by
further judging their fix semantics and understandability,
which are the primary concerns of patch quality [13][15].
Hence, we inherited this acceptability ranking reported by
Kim et al. [17] as an indicator for patch quality. Specifically,
for the two patches generated for each bug, we labeled the
one with a higher ranking as high-quality and the other one
with a lower ranking as low-quality.

Since generated patches already reveal buggy locations
and suggest candidate fixes, for fair comparison, we pro-
vide names of buggy methods to the control group instead
of leaving it completely unaided. This design conforms to
real debugging scenarios where developers are aware of basic
faulty regions, for example, from detailed bug reports [14].
1http://www.mozilla.org/rhino/
2http://commons.apache.org/proper/commons-math/

65



Table 1: Description of the five bugs used in the study. We list semantics of developers’ original fixes, which
are used to evaluate the correctness of participants’ patches.

Bug# Buggy code fragment and symptom Semantics of original developers’ patch
M

a
th

-2
8
0 1 public static double [] bracket (...,

2 double lowerBound , double upperBound ,...)
3 if (fa * fb >= 0.0 ) {
4 throw new ConvergenceException(
5 ...

ConvergenceException is thrown at line 4.

• If fa*fb == 0.0, then the method bracket() should
terminate without ConvergenceException, regardless
of given lowerBound and upperBound values.

• If fa*fb > 0.0, then the method bracket() should
throw ConvergenceException.

R
h
in

o
-1

1
4
4
9
3

1 if (lhs == undefined) {
2 lhs = strings[getShort(iCode , pc + 1)];
3 }

ArrayIndexOutOfBoundsException is thrown at line 2.

• If getShort(iCode, pc + 1) returns a valid index,
then strings[getShort(iCode, pc + 1)] should be
assigned to lhs.

• If getShort(iCode, pc + 1) returns -1, the program
should return normally without AIOBE, and lhs should
be undefined.

R
h
in

o
-1

9
2
2
2
6 1 private void visitRegularCall(Node node , int

2 type , Node child , boolean firstArgDone)
3 ...
4 String simpleCallName = null;
5 if (type != TokenStream.NEW){
6 simpleCallName = getSimpleCallName(node);
7 ...
8 child = child.getNext ().getNext ();

NullPointerException is thrown at line 8.

• Statements in the block of if statement is executed
only if firstArgDone is false.

• simpleCallName should be initialized with a return
value of getSimpleCallName(node).

R
h
in

o
-2

1
7
3
7
9

1 for (int i = 0; i < parenCount; i++) {
2 SubString sub = (SubString) parens.get(i);
3 args[i+1] = sub.toString ();
4 }

NullPointerException is thrown at line 3.

• If parens.get(i) is not null, assign it to args[i+1]
for all i = 0...parenCount-1.

• The program should terminate normally without
NullPointerException when sub is null.

R
h
in

o
-7

6
6
8
3

1 for (int i = num; i < state.parenCount; i++)
2 state.parens[i]. length = 0;
3 state.parenCount = num;

NullPointerException is thrown at line 2.

• The program should terminate without NullPoint-
erException even if state.parens[i] is equal to null.

• If for statement is processing the array state.parens,
it should be processed from index num to
state.parenCount-1.

For simplicity, we refer to participants given different aids
as the LowQ (low-quality patch aided), HighQ (high-quality
patch aided), and Location (buggy location aided) group.

2.2 Participants
Grad: We recruited 44 CS graduate students — 12 from

The Hong Kong University of Science and Technology and
32 from Nanjing University. Graduate students typically
have some programming experience but in general they are
still in an active learning phase. In this sense, they resemble
novice developers.

Engr: We also invited industrial software engineers to
represent the population of experienced developers. In this
study, we recruited 28 software engineers from 11 companies
via email invitations.

MTurk: We further recruited participants from Amazon
Mechanical Turk, a crowdsourcing website for requesters to
post tasks and for workers to earn money by completing
tasks [1]. The MTurk platform potentially widens the va-
riety of our participants, since its workers have diverse de-
mographics such as nationality, age, gender, education, and
income [32]. To safeguard worker quality, we prepared a
buggy code revised from Apache Commons Collection Is-
sue 359 and asked workers to describe how to fix it. Only

those who passed this qualifying test could proceed to our
debugging tasks. We finally recruited 23 MTurk workers,
including 20 developers, two undergraduate students, and
one IT manager, with 1-14 (on average 5.7) years of Java
programming experience.

2.3 Study Design
We provided detailed bug descriptions from Mozilla and

Apache bug reports to participants as their starting point.
We also provided developer-written test cases, which in-
cluded the failed ones that reproduced the bugs. Although
participants were encouraged to fix as many bugs as they
could, they were free to skip any bug as the completion of
all five tasks was not mandatory. To conform to partici-
pants’ different demographics, we adopted the onsite and
online settings as introduced below.

Onsite setting applies to the graduate students. We
adopted a between-group design [20] by dividing them into
three groups; each group was exposed to one of the three de-
bugging aids. Prior to the study, we asked students to self-
report their Java programming experience and familiarity
with Eclipse on a 5-point Likert scale. We used this informa-
tion to evenly divide them into three groups with members
having similar levels of expertise. Finally, the LowQ and
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Table 2: The two generated patches for each bug. The middle column shows the patches’ acceptability
ranking reported by Kim et al. [17]. The patch with a higher ranking (or lower bar) is labeled as high-quality
and its counterpart for the same bug is labeled as low-quality.

Bug High-quality patch Rank Low-quality patch

M
a
th

-2
8
0 public static double [] bracket (...,

double lowerBound , double upperBound ,...)
if (fa * fb > 0.0 || fa * fb >= 0.0 ) {

throw new ConvergenceException(
...

0

1

2

3

H
ig
h
-Q

L
o
w
-Q

public static double [] bracket (...,
double lowerBound , double upperBound ,...)
if (function == null ) {

throw MathRuntimeException.
createIllegalArgumentException(

...

R
h
in

o
-1

1
4
4
9
3 if (lhs == undefined) {

if(getShort(iCode , pc + 1) < strings.
length &&
getShort(iCode , pc + 1) >=0) {
lhs = strings[getShort(iCode ,pc +

1)];
}

}
0

1

2

3

H
ig
h
-Q

L
o
w
-Q

if (lhs == undefined) {
lhs = (( Scriptable)lhs).getDefaultValue

(null);
}

R
h
in

o
-1

9
2
2
2
6

private void visitRegularCall(Node node , int
type , Node child , boolean firstArgDone)

...
String simpleCallName = null;
if (type != TokenStream.NEW){

if (! firstArgDone)
simpleCallName =

getSimpleCallName(node);
... 0

1

2

3

H
ig
h
-Q

L
o
w
-Q

private void visitRegularCall(Node node , int
type , Node child , boolean firstArgDone)

...
String simpleCallName = null;
visitStatement(node);

R
h
in

o
-2

1
7
3
7
9 for (int i = 0; i < parenCount; i++) {

SubString sub =
(SubString) parens.get(i);

if (sub != null) {
args[i+1] = sub.toString ();

}
}

0

1

2

3

H
ig
h
-Q

L
o
w
-Q

for (int i = 0; i < parenCount; i++) {
SubString sub =

(SubString) parens.get(i);
args[parenCount + 1] = new Integer(reImpl

.leftContext.length);
}

R
h
in

o
-7

6
6
8
3 for (int i = num; i < state.parenCount; i++)

if( state != null &&
state.parens[i] != null)

{
state.parens[i]. length = 0;

}
state.parenCount = num;

0

1

2

3

H
ig
h
-Q

L
o
w
-Q

for (int i = num; i < state.parenCount; i++)
{

}
state.parenCount = num;

HighQ groups each had 15 participants and the Location
group had 14 participants.

The graduate students used the Eclipse IDE (Figure 2a).
We piloted the study with 9 CS undergraduate students and
recorded their entire Eclipse usage with screen-capturing
software. From this pilot study, we determined that two
hours should be adequate for participants to complete all
five tasks at a reasonably comfortable pace. The formal
study session was supervised by one of the authors and two
other helpers. At the beginning of the session, we gave a
10-minute tutorial introducing the tasks. Then, within a
maximum of two hours, participants completed the five de-
bugging tasks in their preferred order.

Online setting applies to the software engineers and
MTurk participants who are geographically unavailable. We
created a web-based online debugging system3 that pro-
vided similar features to the Eclipse workbench (Figure 2b).
Unlike Grad, it was unlikely to determine beforehand the
total number of these online participants and their exper-
tise. Hence, to minimize individual differences, we adopted

3http://pishon.cse.ust.hk/userstudy/

a within-group design such that participants can be exposed
to different debugging aids [20]. To balance the experimen-
tal conditions, we assigned the type of aids to each selected
bug in a round-robin fashion such that each aid was equally
likely to be given to each bug.

We piloted the study with 4 CS graduate students. They
were asked to use our debugging system and report any en-
countered problems. We resolved these problems, such as
browser incompatibility, before formally inviting software
engineers and MTurk users.

An exit survey is administered to all the participants
upon their task completion. In the survey, we asked the
participants to rate the difficulty of each bug and the helpful-
ness of the provided aids on a 5-point Likert scale. Also, we
asked them to share their opinions on using auto-generated
patches in a free-textual form. We asked Engr and MTurk
participants to self-report their Java programming experi-
ence and debugging time for each task, since the online sys-
tem cannot monitor the event when they were away from
the keyboard (discussed in Section 5). In addition, we asked
MTurk participants to report their occupations.

We summarize our experimental settings in Table 3.
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Figure 2: The onsite and online debugging environ-
ments, which allow participants to browse a bug’s
description (A), edit the buggy source code (B),
view the debugging aids (C), run the test cases (D)
and submit their patches (E).

2.4 Evaluation Measures
We measure the participants’ patch correctness, debug-

ging time, and survey feedback as described below.
Correctness indicates whether a patch submitted by a

participant is correct or not. We considered a patch correct
only if it passed all the given test cases and also matched
the semantics of the original developers’ fixes as described in
Table 1. Two of the authors and one CS graduate student
with 8 years of Java programming experience individually
evaluated all patches. Initially, the three evaluators agreed
on 283 of 337 patches. The disagreement mainly resulted
from misunderstanding of patch semantics. After clarifica-
tion, the three evaluators carried out another round of in-
dividual evaluations and this time agreed on 326 out of 337
patches. This was considered to be near-perfect agreement
as its Fleiss kappa value equals to 0.956 [11]. For the re-
maining 11 patches, the majority’s opinion (i.e., two of the
three evaluators) was adopted as the final evaluation result.

Debugging time was recorded automatically. For the
onsite session, we created an Eclipse plug-in to sum up the
elapsed time of all the activities (e.g., opening a file, mod-
ifying the code and running the tests) related to each bug.
For online sessions, our system computes participants’ de-
bugging time as the time elapsed from them entering the
website until the patch submission.

Feedback was collected from the exit survey (Section 2.3).
We particularly analyzed participants’ perception about the
helpfulness of generated patches and their free-form answers.
These two items allowed us to quantitatively and quali-
tatively evaluate participants’ opinions on using generated
patches as debugging aids (Section 3.1 and Section 4).

Table 3: The study settings and designs for differ-
ent types of participants, along with their popula-
tion size and number of submitted patches. In cases
where participants skipped or gave up some tasks,
we excluded patches with no modification to the
original buggy code and finally collected 337 patches
for analysis.

Settings Designs Size # Pa-
tches

Grad Onsite (Eclipse) Between-group 44 216
Engr Online (website) Within-group 28 68
MTurk Online (website) Within-group 23 53

Total 95 337

3. RESULTS
We report participants’ debugging performance with re-

spect to different debugging aids (Section 3.1). We then
investigate debugging performance on different participant
types (Section 3.2), bug difficulties (Section 3.3), and pro-
gramming experience (Section 3.4). We use regression mod-
els to statistically analyze the relations between these fac-
tors and the debugging performance (Section 3.5) and finally
summarize our observations (Section 3.6).

3.1 Debugging Aids
Among the 337 patches we collected, 109, 112 and 116 were

aided by buggy locations, LowQ and HighQ patches, respec-
tively. Figure 3 shows an overview of the results in terms of
the three evaluation measures.

Correctness (Figure 3a): Patches submitted by the Lo-
cation group is 48% (52/109) correct. The percentage of
correct patches dramatically increases to 71% (82/116) for
the HighQ group. LowQ patches do not improve debug-
ging correctness. On the contrary, the LowQ group performs
even worse than the Location group, with only 33% (37/112)
patches being correct.

Debugging Time (Figure 3b): The HighQ group has an
average debugging time of 14.7 minutes, which is slightly
faster than the 17.3 and 16.3 minutes of the Location and
LowQ groups.

Feedback (Figure 3c): HighQ patches are considered
much more helpful for debugging compared to LowQ patches.
Mann-Whitney U test suggests that this difference is statis-
tically significant (p-value = 0.0006 < 0.05). To understand
the reasons behind this result, we further analyze partici-
pants’ textual answers and discuss the details in Section 4.

3.2 Participant Types
Our three types of participants, Engr, Grad, and MTurk,

have different demographics and are exposed to different ex-
perimental settings. For this reason, we investigate the de-
bugging performance by participant types.

Figure 5a shows a consistent trend across all three partic-
ipant types: the HighQ group makes the highest percentage
of correct patches followed by the Location group, while the
LowQ group makes the lowest. Note that Grad has a lower
correctness compared to Engr and MTurk, possibly due to
their relatively short programming experience.

Figure 5b reveals that Engr debugs faster than Grad and
MTurk participants. Yet, among the participants from the
same population, their debugging time does not vary too
much between the Location, LowQ and HighQ groups.
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Figure 3: (a) the percentage of correct patches by different debugging aids; (b) debugging time by different
aids; (c) participants’ perception about the helpfulness of LowQ and HighQ patches.

3.3 Bug Difficulty
Since the five bugs vary in symptoms and defect types,

they possibly pose different levels of challenges to the partic-
ipants. Research also shows that task difficulty potentially
correlates to users’ perception about automated diagnostic
aids [23]. For this reason, we investigate participants’ de-
bugging performance with respect to different bugs. We
obtained the difficulty ratings of bugs from the exit sur-
vey. Note that we adopt the difficulty ratings from only the
Location group since other participants’ perceptions could
have been influenced by the presence of generated patches.
As shown in Figure 4, Rhino-192226 is considered to be the
most difficult bug while Rhino-217379 is considered to be the
easiest. In particular, ANOVA with Tukey HSD post-hoc
test [20] shows that the difficulty rating of Rhino-1922264 is
significantly higher than that of the remaining four bugs.

Figure 5c shows that for bug3, the HighQ group made a
“landslide victory” with 70% of the submitted patches being
correct, while no one from the Location or the LowQ group
was able to fix it correctly. One primary reason could be
the complex nature of this bug, which is caused by a miss-
ing if construct (Table 2). This type of bug, also known
as the code omission fault, can be hard to identify [10][14].
Fry and Weimer also empirically showed that the accuracy
of human fault localization is relatively low for missing-
conditional faults [14]. In addition, the fix location of this
bug is not the statement that throws the exception but five
lines above it. The code itself is also complex for involving
lexical parsing and dynamic compilation. Hence, both the
Location and LowQ groups stumbled on this bug. However,
the HighQ group indeed benefited from the generated patch,
as one participant explained:

“Without deep knowledge of the data structure represent-
ing the code being optimized, the problem would have taken
quite a long time to determine by manually. The patch
precisely points to the problem and provided a good hint,
and my debugging time was cut down to about 20 min-
utes.”

For bug4, interestingly, the Location group performs bet-
ter than the LowQ and even the HighQ group (Figure 5c).
One possible explanation is that the code of this bug re-
quires less project-specific knowledge (Table 2) and its fix

4For simplicity, in the remaining of the paper we refer to
each bug using its order appearing in Table 1.

1:Very easy

2:Easy

3:Medium

4:Difficult

5:Very difficult

Bug1

Math−280 Bug2

Rhino−114493 Bug3

Rhino−192226 Bug4

Rhino−217379 Bug5

Rhino−76683

Figure 4: The average difficulty rating for each bug.

by adding a null checker is a common pattern [17]. There-
fore, even without the aid of generated patches, participants
were likely to resolve this bug solely by themselves, and they
indeed considered it to be the easiest bug (Figure 4). For
bug5, the LowQ patch deletes the entire buggy block inside
the for-loop (Table 2), which might raise suspicion for being
too straightforward. This possibly explains why the LowQ
and Location groups have the same correctness for this bug.

In general, the HighQ group has made the highest percent-
age of correct patches for all bugs except bug4. The LowQ
group, on the other hand, has comparable or even lower cor-
rectness than the Location group. As for debugging time,
participants in general are slower for the first three bugs as
shown in Figure 5d. We speculate that this also relates to
the difficulty of the bugs, as these three bugs are considered
to be more difficult than the other two (Figure 4).

3.4 Programming Experience
Research has found that expert and novice developers

are different in terms of debugging strategies and perfor-
mance [18]. In this study, we also explore whether the use-
fulness of generated patches as debugging aids is affected by
participants’ programming experience.

Among all 95 participants, 72 reported their Java pro-
gramming experience. They have up to 14 and on average
4.4 years of Java programming experience. Accordingly, we
divided these 72 participants into two groups — experts with
above average and novices with below average programming
experience.

As shown in Figure 5e, experts are 60% correct when aided
by Location. This number increases to 76% when they are
aided by HighQ patches and decreases to 45% when they
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Figure 5: Percentage of correct patches and debugging time by participants, bugs, and programming expe-
rience.

are aided by LowQ patches. Novices manifest a similar
yet sharper trend: their percentage of correct patches in-
creases substantially from 44% to 74% when they are aided
by Location and HighQ patches, respectively. Interestingly,
when aided by HighQ patches, the debugging correctness
of novices is almost as good as that of the experts. Fig-
ure 5f shows that novices also spend less time debugging
with HighQ patches than with Location and LowQ patches.

3.5 Regression Analysis
Prior subsections observe that changes in debugging cor-

rectness and time are attributable to debugging aids, bugs,
participant types, programming experience, and their joint
effects. To quantify the effects of these factors on the de-
bugging performance, we perform multiple regression anal-
ysis. Multiple regression analysis is a statistical process for
quantifying relations between a dependent variable and a
number of independent variables [12], which fits naturally to
our problem. Multiple regression analysis also quantifies the
statistical significance of the estimated relations [12]. This
type of analysis has been applied in other similar research,
for example, to analyze how configurational characteristics
of software teams affect project productivity [4][5][31].

Debugging aids, participant types and bugs are all cate-
gorical variables, with 3, 3, 5 different values, respectively.
Since categorical variables cannot be directly used in regres-
sion models, we apply dummy coding to transform a cate-
gorical variable with k values into k−1 binary variables [12].
For example, for the debugging aids, we create two binary
variables HighQ and LowQ, one of them being 1 if the cor-
responding patch is given. When both variables are 0, the
Location aid is given and serves as the basis to which the
other two categories are compared. In the same manner, we
dummy-code participant types and bugs with “Grad” and
“bug4” as the basis categories5. Below shows the equations
that form our regression models. Since patch correctness

5The selection of basis category is essentially arbitrary and
does not affect the regression results [12].

is binary data while debugging time is continuous data, we
estimate equation 1 using logistic regression and equation 2
using linear regression [12]. Note that we log-transform de-
bugging time to ensure its normality [12].

logit(correctness) = α0 + α1 ∗HighQ + α2 ∗ LowQ

+α3 ∗ Engr + α4 ∗MTurk + α5 ∗ Bug1

+α6 ∗ Bug2 + α7 ∗ Bug3

+α8 ∗ Bug5 + α9 ∗ JavaYears

(1)

ln(time) = β0 + β1 ∗HighQ + β2 ∗ LowQ + β3 ∗ Engr

+β4 ∗MTurk + β5 ∗ Bug1 + β6 ∗ Bug2

+β7 ∗ Bug3 + β8 ∗ Bug5 + β9 ∗ JavaYears

(2)

Table 4 shows the regression results, with the first num-
ber as the variable coefficient and the second number in the
parenthesis as its p-value. In general, a positive coefficient
means the variable (row name) improves the debugging per-
formance (column name) compared to the basis category,
while a negative coefficient means the opposite. Since the
logistic regression computes the log of odds for correctness
and we log-transform debugging time in the linear regres-
sion, both computed coefficients need to be “anti-logged” to
interpret the results. We highlight our findings below.

HighQ patches significantly improve debugging co-
rrectness, with coef=1.25>0 and p-value=0.00<0.05. To
put this into perspective, holding other variables fixed, the
odds of the HighQ group making correct patches is e1.25=3.5
times that of the Location group. The LowQ group, on the
other hand, is less likely to make correct patches though
this trend is not significant (coef= -0.55, p=0.09). The aid
of HighQ (coef=-0.19, p=0.08) and LowQ patches (coef=-
0.07,p=0.56) both slightly reduce the debugging time but
not significantly.

Difficult bugs significantly slow down debugging,
as bug1,2,3 all have significant positive coefficients or longer
debugging time. For the most difficult bug3, its debugging
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Table 4: Regression results. Arrows indicate the di-
rection of impact on debugging performance. Dou-
ble arrows indicate that the coefficient is statistically
significant at 5% level.

Correctness Debugging Time
coef (p-value) coef (p-value)

HighQ 1.25 (0.00): ⇑ -0.19 (0.08): ↓
LowQ -0.55 (0.09): ↓ -0.07 (0.56): ↓
Bug1 -0.57 (0.18): ↓ 0.96 (0.00): ⇑
Bug2 -0.50 (0.22): ↓ 0.56 (0.00): ⇑
Bug3 -2.09 (0.00): ⇓ 0.59 (0.00): ⇑
Bug5 -0.59 (0.16): ↓ -0.05 (0.75): ↓
Engr 1.03 (0.02): ⇑ -1.25 (0.00): ⇓

MTurk 0.90 (0.02) ⇑ -0.16 (0.20): ↓
Java years 0.12 (0.02): ⇑ -0.03 (0.11): ↓

time is e0.59=1.8 times that of bug4, yet the odds of correctly
fixing it is only e−2.09≈1/8 of the odds of correctly fixing
bug4.

Participant type and experience significantly af-
fect debugging performance: compared to Grad, Engr
and MTurk are much more likely to make correct patches
(coef=1.03 and 0.90 with p=0.02). Engr is also significantly
faster, spending approximately e−1.25≈1/3 time debugging.
Also, more Java programming experience significantly im-
proves debugging correctness (coef=0.12, p=0.02).

Our regression analysis thus far investigates the individual
impact of debugging aids and other variables on the debug-
ging performance. However, the impact of debugging aids
also possibly depends on the participants who use the aids
or the bugs to be fixed. To explore such joint effects, we
add interaction variables to the regression model and use
ANOVA to analyze their explanatory powers [12]. Below
are our findings.

HighQ patches are more useful for difficult bugs:
as shown in Table 5, in addition to the four single variables,
the debugging aids and bugs also jointly explain large vari-
ances in the patch correctness (deviance reduction=25.54,
p=0.00). Hence, we add this interaction variable Aid:Bug
to the logistic regression for estimating correctness. Table 6
shows that HighQ:Bug3 has a relatively large positive co-
efficient (coef=18.69), indicating that the HighQ patch is
particularly useful for fixing this bug.

The type of aid does not affect debugging time:
none of the interaction variables significantly contributes to
the model (Table 5). Interestingly, neither does the debug-
ging aid itself, which explains only 1% (R2=0.01) of the
variance in the debugging time. Instead, debugging time is
much more susceptible to participant types and bugs, which
further explain 20% and 16% of its variance, respectively.

These regression results are consistent with those observed
from Figures 3, 4 and 5 in the preceding subsections. Due to
space limitation, we elaborate more details of the regression
analysis at http://www.cse.ust.hk/˜idagoo/autofix/regression

analysis.html, which reports the descriptive statistics and cor-
relation matrix for the independent variables, the hierarchi-
cal regression results, and how Table 4, 5, and 6 are derived.

3.6 Summary
Based on our results, we draw the following conclusions:

• High-quality generated patches significantly improve
debugging correctness and are particularly beneficial

Table 5: ANOVA for the regression models with
interaction variables. It shows how much variance
in correctness/debugging time is explained as each
(interaction) variable is added to the model. The
p-value in parenthesis indicates whether adding the
variable significantly improves the model.

Correctness Debugging Time
Variable (resid. deviance R2 (variance

reductions) explained)

DebuggingAid 32.80 (0.00) 0.01 (0.06)
Participant 16.85 (0.00) 0.20 (0.00)

Bug 21.91 (0.00) 0.16 (0.00)
JavaYears 6.13 (0.01) 0.01 (0.11)

Aid:Participant 2.95 (0.57) 0.02 (0.06)
Aid:Bug 25.54 (0.00) 0.02 (0.26)

Aid:JavaYears 1.18 (0.55) 0.00 (0.82)

Table 6: Coefficients of the interaction variable De-
bugAid:Bug for estimating patch correctness. The
bold value is statistically significant at 5% level.

Bug1 Bug2 Bug3 Bug4 Bug5
HighQ 0.42 1.86 18.69 -0.45 0.99
LowQ -0.39 -0.24 0.12 -1.76 -0.09

for difficult bugs. Low-quality generated patches sligh-
tly undermine debugging correctness.

• Participants’ debugging time is not affected by the de-
bugging aids they use. However, their debugging takes
a significantly longer time for difficult bugs.

• Participant type and experience also significantly af-
fect debugging performance. Engr, MTurk, or the par-
ticipants with more Java programming experience are
more likely to make correct patches.

4. QUALITATIVE ANALYSIS
We used the survey feedback to qualitatively investigate

participants’ opinions on using auto-generated patches in de-
bugging. In total, we received 71 textual answers. After an
open coding phase [20], we identified twelve common reasons
why participants are positive or negative about using auto-
generated patches as debugging aids. Table 7 summarizes
these reasons along with the participants’ original answers.

Participants from both the HighQ and LowQ groups ac-
knowledge generated patches to provide quick starting points
by pinpointing the general buggy area (P1-P3). HighQ patc-
hes in particular simplify debugging and speed up the debug-
ging process (P4-P6). However, a quick starting point does
not guarantee that the debugging is going down the right
path, since generated patches can be confusing and mislead-
ing (N1-N2). Even HighQ patches may not completely solve
the problem and thus need further human perfection (N3).

Participants, regardless of using HighQ or LowQ patches,
have a general concern that generated patches may over-
complicate debugging or over-simplify it by not address-
ing root causes (N4-N5). In other words, participants are
concerned about whether machines are making random or
educated guesses when generating patches (N6). Another
shared concern is that the usage of generated patches should
be based on a good understanding to the target programs
(N7-N8).
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Table 7: Participants’ positive and negative opinions on using auto-generated patches as debugging aids. All
of these sentences are the participants’ original feedback. We organize them into different categories with
the summary written in italic.

Positive Negative

It provides a quick starting point.

P1: It usually provides a good starting point. (HighQ)
P2: It did point to the general area of code. (LowQ)
P3: I have followed the patch to identify the exact place
where the issue occurred. (LowQ)

It can be confusing, misleading or incomplete.
N1: The generated patch was confusing. (LowQ)
N2: For developers with less experience it can give them the
wrong lead. (LowQ)
N3: It’s not a complete solution. The patch tested for two null
references, however, one of the two variables was dereferenced
about 1-2 lines above the faulting line. Therefore, there should
have been two null reference tests. (HighQ)

It simplifies the problem.

P4: I feel that the hints were quite good and sim-
plified the problem. (HighQ)
P5: The hint provided the solution to the problem that
would have taken quite a long time to determine by
manually. (HighQ)
P6: This saves time when it comes to bugs and memory
monitoring. (HighQ)

It may over-complicate the problem or over-simplify it
by not addressing the root cause.
N4: Sometimes they might over-complicate the problem or not
address the root of the issue. (HighQ)
N5: The patch did not appear to catch the issue and instead
looked like it deleted the block of code. (LowQ)
N6:Generated patches are only useful when the machine does
not do it randomly, e.g., it cannot just guess that something
may fix it, and if it does, that that is good. (LowQ)

It helps brainstorming.

P7: They would seem to be useful in helping find
various ideas around fixing the issue, even if the patch
isn’t always correct on its own. (LowQ)

It may not be helpful for unfamiliar code.

N7: I prefer to fix the bug manually with a deeper un-
derstanding of the program. (HighQ)
N8: A context to the problem may have helped here. (LowQ)

It recognizes easy problems.

P8: They would be good at recognizing obvious
problems (e.g., potential NPE). (HighQ)

It may not recognize complicated problems.

N9: They would be difficult to recognize more involved
defects. (HighQ)

It makes tests pass.

P9: The patch made the test case pass. (LowQ)

It may not work if the test suite itself is insufficient.
N10: Assuming the test cases are sufficient, the patch will
work. (HighQ)
N11: I’m worried that other test cases will fail. (LowQ)

It provides extra diagnostic information.

P10: Any additional information regarding a bug
is almost always helpful. (HighQ)

It cannot replace standard debugging tools.

N12: I would use them as debugging aids, along with
access to standard debugging tools. (LowQ)

Interestingly, we also observe several opposite opinions.
Participants think that generated patches may be good at
recognizing easy bugs (P8), but may not work well for com-
plicated ones (N9). While generated patches can quickly
pass test cases (P9), they work only if test cases are sufficient
(N10-N11). Finally, participants use generated patches to
brainstorm (P7) and acquire additional diagnostic informa-
tion (P10). However, they still consider generated patches
dispensable, especially when powerful debugging tools are
available (N12).

In general, participants are positive about auto-generated
patches as they provide quick hints about either buggy ar-
eas or even fix solutions. On the other hand, participants
are less confident about the capability of generated patches
for handling complicated bugs and addressing root causes,
especially when they are unfamiliar with code and test cases.

5. THREATS TO VALIDITY
The five bugs and ten generated patches we used to con-

struct debugging tasks may not be representative of all bugs
and generated patches. We mitigate this threat by selecting
real bugs with varied symptoms and defect types and using

patches that were generated by two state-of-the-art program
repair techniques [17][34]. Nonetheless, further studies with
wider coverage of bugs and auto-generated patches are re-
quired to strengthen the generalizability of our findings.

We measured patch quality using human-perceived ac-
ceptability, which may not generalize to other measurements
such as metric-based ones [27]. However, patch quality is
a rather broad concept, and research has suggested that
there is no easy way to definitively describe patch qual-
ity [13][24]. Another threat regarding patch quality is that
we labeled a generated patch as “LowQ” relative to its com-
peting “HighQ” patch in this study. We plan to work on a
more general solution by establishing a quality baseline, for
example the buggy location as in the control group, and dis-
tinguishing the quality of auto-generated patches according
to this baseline.

To avoid repeated testing [20], we did not invite domain
experts who were familiar with the buggy code, since it
would be hard to judge whether their good performance is
attributable to debugging aids or their a priori knowledge of
the corresponding buggy code. Instead, we recruited partic-
ipants who had little or no domain knowledge of the code.
This is not an unrealistic setting since in practice, devel-
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opers are often required to work with unfamiliar code due
to limited human resources or deadline pressure [9][19][25].
However, our findings may not generalize to project devel-
opers who are sufficiently knowledgeable about the code.
Future studies are required to explore how developers make
use of auto-generated patches to debug their familiar code.

Our manual evaluation of the participants’ patches might
be biased. We mitigate this threat by considering patches
verified by the original project developers as the ground
truth. Three human evaluators individually evaluated the
patches for two iterations and reached a consensus with the
Fleiss kappa equals to 0.956 (Section 2.4).

Our measuring of debugging time might be inaccurate
for Engr and MTurk participants, since the online system
cannot remotely monitor participants when they were away
from keyboard during debugging. To mitigate this threat,
we asked these participants to self-report the time they had
spent on each task and found no significant difference be-
tween their estimated time and our recorded time.

One may argue that participants might have blindly reused
the auto-generated patches instead of truly fixing bugs on
their own. We took several preventive measures to discour-
age such behaviors. First, we emphasized in the instructions
that the provided patches may or may not really fix the bugs
and participants should make their own judgement. Second,
we claimed to preserve additional test cases by ourselves so
that participants may not relax even if they passed all the
tests by reusing the generated patches. We also required
participants to justify their patches during submissions. As
discussed in Section 3, the participants aided by generated
patches spent a similar amount of debugging time to the
Location group. This indicates that participants were less
likely to reuse generated patches directly, which would oth-
erwise take only seconds to complete.

6. RELATED WORK
Automatic patch generation techniques have been actively

studied. Most studies evaluated the quantitative aspects of
proposed techniques, such as the number of candidates gen-
erated before a valid patch is found and the number of sub-
jects for which patches can be generated [8][21][26][30][33]
[34]. Our study complements prior studies by qualitatively
evaluating the usefulness of auto-generated patches as de-
bugging aids.

Several studies have discussed the quality of generated
patches. Kim et al. evaluated generated patches using hu-
man acceptability [17], which is adopted in our study to in-
dicate patch quality. Fry et al. considered patch quality as
its understandability and maintainability [13]. Their human
study revealed that generated patches alone are less main-
tainable than human-written patches. However, when aug-
mented with synthesized documentation, generated patches
have comparable or even better maintainability than human-
written patches [13]. Fry et al. also investigated code fea-
tures (e.g., number of conditionals) that correlate to patch
maintainability [13].

While patch quality can be measured from various per-
spectives, research has suggested that instead of using a uni-
versal definition, the measurement of patch quality should
depend on the application [13][24][27]. Monperrus suggested
that generated patches should be understandable by humans
when used in recommendation systems [24]. We used essen-
tially the same experimental setting, in which participants

were recommended but not forced to use generated patches
for debugging. Our results consistently show that patch un-
derstandability affects the recommendation outcome.

Automated support for debugging is another line of re-
lated work. Parnin and Orso conducted a controlled ex-
periment, requiring human subjects to debug with or with-
out the support of an automatic fault localization tool [28].
Contrary to their finding that the tool did not help perform
difficult tasks, we found that generated patches tend to be
more beneficial for fixing difficult bugs.

Ceccato et al. conducted controlled experiments, in which
humans performed debugging tasks using manually written
or automatically generated test cases [7]. They discovered
that despite the lack of readability, human debugging per-
formance improved significantly with auto-generated test
cases. However, generated test cases are essentially dif-
ferent from the generated patches used in our study. For
instance, generated test cases include sequences of method
calls that may expose buggy program behaviors, while gen-
erated patches directly suggest bug fixes. Such differences
might cause profound deviations in human debugging be-
haviors. In fact, contrary to the findings of Ceccato et al.,
we observed that the participants’ debugging performance
dropped when given low-quality generated patches.

7. CONCLUSION
We conducted a large-scale human study to investigate the

usefulness of automatically generated patches as debugging
aids. We discover that the participants do fix bugs more
quickly and correctly using high-quality generated patches.
However, when aided by low-quality generated patches, the
participants’ debugging correctness is compromised.

Based on the study results, we have learned important
aspects to consider when using auto-generated patches in
debugging. First of all, strict quality control of generated
patches is required even if they are used as debugging aids
instead of direct integration into the production code. Oth-
erwise, low-quality generated patches may negatively affect
developers’ debugging capabilities, which might in turn jeop-
ardize the overall software quality. Second, to maximize the
usefulness of generated patches, proper tasks should be se-
lected. For instance, generated patches can come in handy
when fixing difficult bugs. For easy bugs, however, simple
information such as buggy locations might suffice. Also,
users’ development experience matters, as our result shows
that novices with less programming experience tend to ben-
efit more from using generated patches.

To corroborate these findings, we need to extend our study
to cover more diverse bug types and generated patches. We
also need to investigate the usefulness of generated patches
in debugging with a wider population, such as domain ex-
perts who are sufficiently knowledgeable of the buggy code.
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